
I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 1 December 20, 1999

Confidential

3dfx Interactive
Modularized Reference Implementation

Document for I2C

Product DevelopmentProduct Definition

Phase 1

Idea/Product
Conception

Phase 2

Product Definition
Refinement

Phase 3

Development Plan

Phase 4

Development
Implementation

Phase 5

Validation &

Pre-production
Sampling

Phase 6

Production Ship

Phase 7

End of Life
Gate

1
Gate

3
Gate

2
Gate

6
Gate

5
Gate

4

HW SW

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 2 December 20, 1999

Confidential

0 Contents
0 CONTENTS ... 2

0.1 REVISION HISTORY..3
0.2 ISSUES..3

1 INTRODUCTION.. 4

1.1 WHAT IS AN MRI? ...4
1.2 WHY AN I2C MRI?...4

2 FUNCTIONAL OVERVIEW.. 5

2.1 INITIALIZING THE I2C MRI CODE ...7
2.2 OBTAINING A HANDLE TO AN I2C BUS..7
2.3 CHANGING THE I2C BUS SPEED..8
2.4 RELINQUISHING OWNERSHIP OF AN I2C BUS..8
2.5 GENERATING A START CONDITION...9
2.6 GENERATING A STOP CONDITION ...9
2.7 SENDING A BYTE ON THE I2C BUS...9
2.8 SENDING A SERIES OF BYTES ON THE I2C BUS...10
2.9 READING A BYTE FROM THE I2C BUS..10
2.10 READING A SERIES OF BYTES FROM THE I2C BUS...10
2.11 I2C PRIMITIVES...11

3 CONFIGURATION AND INITIALIZATION...12

3.1 REQUIRED ENTRIES IN I2CMACRO.H..12
I2C_DEVINFOPTR(pcontext) ..12
I2C_GETBUSINFO(pcontext, busid)..12
I2C_DELAYTIME(usecs)...12
DEBUGI2C(expr, args) ...12

3.2 OPTIONAL ENTRIES IN I2CSETUP.H..13
I2C_PEDANTIC..13
I2C_DEBUGTEXT..13
I2C_PRINTERPORT...13
I2C_MAXBUSES ..13
I2C_MAXMUXEN..13
I2C_MAXPURPOSES...13
I2C_STRETCH ..13

3.3 INITIALIZATION ..14
I2CBUS InstantiateBusI2C(I2CCONTEXT pContext, …)...14
int SetUsageI2C(I2CCONTEXT pContext, I2CBUS busid, FxU32 usage)..................................15
I2CMUX InstantiateMuxI2C(I2CCONTEXT pContext, I2C_SETMUX pfMux)15
int AssociateBusToMuxI2C(I2CCONTEXT pContext, …)..15

4 DATA STRUCTURES, TYPES AND CONSTANTS...16

4.1 DEVICE-INDEPENDENT DATA STRUCTURES, TYPES, AND CONSTANTS..16
I2CBUS (di_i2c.h)...16
I2CMUX (di_i2c.h)..16
I2CKEY (di_i2c.h)...16
I2C_NOTAPURPOSE...16
I2C_TVENCODER..16
I2C_MONITORDDC...16
I2C_MULTIMEDIA ..16

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 3 December 20, 1999

Confidential

I2C_FLATPANELDDC ..16
I2C_SERIALEEPROM ...16
I2C_LPTDEBUGGING...17

4.2 DEVICE-SPECIFIC DATA STRUCTURES, TYPES, AND CONSTANTS...17

0.1 Revision History
Revision Description Date

0.1 --Began initial draft. 990615
0.2 --Finished initial draft, and distributed for comments 990628
0.3 --Corrected various errata, modified InstantiateBusI2C, and added

AssociateBusToMuxI2C and I2CBUS.
990629

0.4 --More errata, added a code conceptualization diagram, renamed
i2c_releaseaccess to i2c_endaccess, and added an “Issues” section.

990629

0.5 --Changed InstantiateBusI2C, InstantiateMuxI2C, and
AssociateBusToMuxI2C to use function pointers, to improve hardware
independency.
--Added I2C_PEDANTIC and related
--Removed I2C_INPORTB, I2C_OUTPORTB
--Effectively removed the “Device Specific Data Structures” section,
since this document is targeted towards MRI clients.
--Added lots of new optional defines (section 3.2)
--Added I2C_ALLOCMEM
--Removed InitializeI2C() and added i2c_initialize()

990630

0.6 --REALLY removed InitializeI2C() this time (no, really!)
--Added the cool 3dfx product cycle timeline diagram to the front page

990630

0.99 --Removed I2C_IBMPCMACHINE
--Updated some function definitions that changed during the course of
implementation
--Fixed various and sundry errata

990729

1.0 --Renamed “i2cconfig.h” to “i2cmacro.h”, and added “i2csetup.h”
--Removed I2C_ALLOCMEM
--Removed I2C_MICROSOFT
--Removed section 2.12 (WDM interface)
--Added I2CCONTEXT parameter to all applicable function prototypes
--Updated section 3

991220

0.2 Issues
§

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 4 December 20, 1999

Confidential

1 Introduction
This document is written for software engineers who need to utilize this I2C MRI in their current project.

1.1 What is an MRI?
An MRI (Modularized Reference Implementation) is a piece of code that the author attempted to write
in a sufficiently generic and robust manner, so as to maximize its portability and reusability across
products and operating systems. By designing an implementation that can be used over and over
again, developers can free up more of their future time to work on different, more interesting tasks.

1.2 Why an I2C MRI?
The impetus behind this I2C MRI effort is really secondary in nature. Our primary motive is to present
a DDC MRI, for use in all of our display drivers. But since DDC is built on top of I2 C, it became
necessary to do this first. But beyond this motive, there exist many other important reasons why an I2C
MRI is beneficial.

Many components and feature sets of our products rely upon the ability to communicate with ancillary,
on-board devices using the industry standard I2C protocol. Examples include:

§ Multimedia applications
§ Monitor DDC communications
§ Serial EEPROM access for changing boot-up configuration

History and experience has shown that many of these devices are very sensitive to timing issues. As
such, it is important that we adhere to the timing requirements outlined in the I2C specification, and
provide a mechanism to slow down gracefully, if a particular device proves to be sluggish. This
requires our I2C implementation to have timing characteristics that are independent of CPU and system
speed. Additionally, since I2C is inherently slow, it is important to yield wait times back to the
scheduler of the operating system whenever possible, to avoid system stalls that are common with I2C
implementations that “spin” while waiting on an event. The more responsive a user’s system is, the
happier the user will be.

Managing these types of issues across multiple products and multiple OSes has proven difficult,
because each project’s source base has had it’s own implementation of I2C support—and sometimes
even more than one. The goal of this project is to design and develop an I2C implementation that:

§ Is reusable across products
§ Is portable across operating systems
§ Arbitrates access to each bus for multiple clients
§ Exists in a centralized place in source control, that is shared by all products

This last feature affords us the ability to upgrade or fix the source once, and have all products benefit
immediately. Write once, reuse often.

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 5 December 20, 1999

Confidential

2 Functional Overview
Frequently, graphics hardware has the ability to control one or more I2 C buses. Each bus can have its own,
dedicated GPIO pins (as is the case with I2 C bus #0, in the diagram below,) or they can share their
connection with other buses, via an external mux. More than one I2C device may be attached to any given
bus, and two or more buses may be attached to any given mux.

I2C master
(usually GPIO

pins on the
display device)

I2C mux A

I2C device 0

I2C device 1 I2C device 2

Bus # 0

Bus # 1 Bus # 2

I2C device 3

Figure 1, Conceptualization of Hardware

There are three sets of functions in the I2C MRI. Function names that follow the format
“XxxxYyyyyI2C()” are used only for configuration and initialization of the I2 C MRI code, at system init
time. Function names that follow the “i2c_xxxyyyy()” naming convention are used when accessing the I2C
buses. Finally, Function names that follow the “I2C_XXXYYYY” naming convention are used to denote
functions that provide operating-system-specific and/or hardware-specific services.

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 6 December 20, 1999

Confidential

A resource management problem arises when you have two or more I2C buses that are “joined at the hip”
by a mux; you cannot allow both buses to be used simultaneously. In the example given in figure 1 , Bus
#1 and Bus #2 are mutually exclusive, due to their reliance on I2 C mux A. This means that the code must
provide resource management that is board specific, in addition to providing access to the registers that
control the I2C hardware. This I2 C MRI is designed with these issues in mind, and figure 2 gives a good
visualization.

ConfigureI2C()

Arrows indicate the direction of the calls (the arrow points at the callee)

 InstantiateBusI2C(...)
 InstantiateMuxI2C(…)

SetUsageI2C(…)
AssociateBusToMuxI2C(...)

I2C_GETSDA() I2C_SETSCL()
I2C_GETSCL() I2C_SETMUX()
I2C_SETSDA() I2C_DELAYTIME()

client code

di_i2c.c (device independent code)

 i2c_initialize()
 i2c_getaccess()
 i2c_setspeed()
 i2c_endaccess()

 i2c_stop()
 i2c_start()
 i2c_readbyte()
 i2c_sendbyte()

ds_i2c.c

(provided by the
MRI client)

 (I2C_GETXXX and I2C_SETXXX are typedefs for pointers to functions.)

Figure 2, Conceptualization of Code

In the example above, di_i2c.c provides resource management in addition to implementing the I2C
protocol. But to do this, it must know which I2C buses are exclusive to others, and how. This is the point
of the AssociateBusToMux() calls that the client-supplied ds_i2c.c file makes.

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 7 December 20, 1999

Confidential

2.1 Initializing the I2C MRI Code
Before it does anything else I2C-relate, the client code must call i2c_initialize() .

int i2c_initialize(I2CCONTEXT pContext);

This instructs the I2C MRI code to initialize its internal data structures, and to call the ConfigureI2C()
function, located in the ds_i2c.c file.

This function returns I2C_SUCCESS or I2C_FAILURE. If it fails, no I2C support will be available.

The pContext parameter is a generic handle. Exactly what it is will vary of OS to OS, and will be
defined by the particular I2C MRI being used. All that is required is for this value to map 1-to-1 with a
data structure associated with particular I2C host device, and for that data structure to contain (possibly
in addition to other, non-related things,) both a set of state information for each I2C bus, and a set of
register base addresses for each I2C bus. The I2C MRI will use the os-specific I2C_DEVINFOPTR
macro to obtain the I2C state information, using this generic handle.

Exempli gratia: In the case of Microsoft operating systems, I2C_DEVINFOPTR expects it to be the
address of the current DEVTABLE structure, which contains both the register base address(es) of the
I2C control registers, and the i2cinfo structure that contains the state information.

All of the i2c_xxxyyyyy() and XxxYyyyyI2C() functions require this parameter, and assume it is
valid. If pContext is invalid, the results are undefined, and most likely undesireable.

2.2 Obtaining a handle to an I2C bus
Ownership of an I2C bus can be obtained by calling i2c_getaccess().

I2CKEY i2c_getaccess(I2CCONTEXT pContext, FxU32 usage, FxU8 speed);

I2CKEY tvout;
I2CCONTEXT pContext;
tvout = i2c_getaccess(pContext, I2C_TVENCODER, I2C_NORMALSPEED);

This function gives the owner of the handle (also called the “key”) exclusive rights to the I2C bus in
question. If this I2C bus is attached to a mux, then all other buses attached to that same mux will be
unavailable while this bus is locked. Likewise, this function will refuse to assign ownership if this bus
or another bus on the same mux is already in use. The key returned by this function serves two
purposes; it simultaneously acts as a handle identifying which bus you are referring to, and as a unique
lock that guarantees you exclusive access to the I2C bus in question.

The pContext parameter has the usual meaning.

The usage parameter indicates which I2C bus you are interested in. If a bus that supports the given
usage is present, and is available for use, i2c_getaccess() will return a handle for that I2C bus.
Otherwise, the value returned is I2C_NOTAKEY.

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 8 December 20, 1999

Confidential

The speed parameter allows the code to slow down the I2C activity. At full speed, the I2C code is
timed to operate at between 90 and 95% of the 100 kHz maximum allowed by the I2C specification.
This parameter can be useful for I2C devices that have difficulty operating at that speed. This
parameter is interpreted as a delay multiplier (i.e., the lower the number, the faster the bit rate.) A
value of zero is understood to mean the same thing as a value of 1.

You should be aware that the actual maximum bus speed will be closer to 90 or 95 kHz, due to both
overhead in the code, and built in “fudge factors” that ensure adherence to the I2C specification. This
margin reduces in percentage for lower specified bus frequencies.

The value I2C_NORMALSPEED equates to the value 0, which is a synonym for 1, or full speed. The
given speed will remain in effect until ownership of the bus is relinquished, or the function
i2c_setspeed() is called. The I2 C MRI may arbitrarily impose a practical limitation on the slowest
allowed bus speed, to protect system performance.

2.3 Changing the I2C bus speed
If you find yourself needing to change the bus speed on a bus your code already has ownership of, you
do not have to relinquish ownership to obtain a new handle with the speed set differently. You can
change the bus speed on the fly by calling i2c_setspeed() .

void i2c_setspeed(I2CCONTEXT pContext, I2CKEY key, FxU8 speed);

i2c_setspeed(pContext, tvout, 2); /* reduce bus speed to half of maximum */

The pContext and key parameters have their usual meaning.

The speed parameter has the exact meaning that it has in i2c_getaccess().

If key is invalid, this function does nothing. If pContext is invalid, the results are undefined.

2.4 Relinquishing ownership of an I2C bus
Because a bus (and all other buses related to it via a mux) becomes unusable for other threads when
owned, your code should release bus ownership when it is finished with the immediate task at hand.
Your code should not obtain a bus handle, and stow it away for future use. The i2c_endaccess()
function is provided for this purpose

void i2c_endaccess(I2CCONTEXT pContext, I2CKEY key); /* “key” must be a valid I2CKEY */

/*
 * the following relinquishes control of the I2C bus.
 * (this example assumes tvout is a valid I2CKEY, and that pContext is a valid I2CCONTEXT*
 */
i2c_endaccess(pContext, tvout);

The pContext and key parameters have their usual meaning.

If key is invalid, this function does nothing. If pContext is invalid, the results are undefined.

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 9 December 20, 1999

Confidential

2.5 Generating a Start Condition
The i2c_start() function is used to generate a start condition on a specified I2C bus.

int i2c_start(I2CCONTEXT pContext, I2CKEY key);

This function returns I2C_SUCCESS or I2C_FAILURE. Possible reasons for failure:
§ Invalid I2CKEY
§ Unable to generate start condition (possible bus contention)

If key is invalid, this function returns I2C_FAILURE. If pContext is invalid, the results are undefined.

2.6 Generating a Stop Condition
The i2c_stop() function is used to generate a stop condition on a specified I2C bus.

int i2c_stop(I2CCONTEXT pContext, I2CKEY key);

This function returns I2C_SUCCESS or I2C_FAILURE. Possible reasons for failure:
§ Invalid I2CKEY
§ Bus contention

If key is invalid, this function returns I2C_FAILURE. If pContext is invalid, the results are undefined.

2.7 Sending a Byte on the I2C bus
The i2c_sendbyte() function is used to send a byte across a specified I2C bus.

int i2c_sendbyte(I2CCONTEXT pContext, I2CKEY key, FxU8 byte);

This function returns I2C_SUCCESS or I2C_FAILURE. Possible reasons for failure:
§ Invalid I2CKEY
§ Device did not respond (failure to ACKnowledge)
§ Bus contention

If key is invalid, this function returns I2C_FAILURE. If pContext is invalid, the results are undefined.

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 10 December 20, 1999

Confidential

2.8 Sending a Series of Bytes on the I2C bus
The i2c_sendbytes() function is used to send a series of bytes on a specified I2C bus.

int i2c_sendbytes(I2CCONTEXT pContext, I2CKEY key, FxU16 numbytes, FxU8* pbytes);

This function returns I2C_SUCCESS or I2C_FAILURE. Possible reasons for failure:
§ Invalid I2CKEY
§ pbytes is NULL
§ Bus contention
§ Device did not respond (failure to ACKnowledge)

If key is invalid, this function returns I2C_FAILURE. If pContext is invalid, the results are undefined.

2.9 Reading a Byte from the I2C bus
The i2c_readbyte() function is used to read a byte on a specified I2C bus.

int i2c_readbyte(I2CCONTEXT pContext, I2CKEY key, FxU8* pbyte, int ack);

This function returns I2C_SUCCESS or I2C_FAILURE. Possible reasons for failure:
§ Invalid I2CKEY
§ pbyte is NULL
§ Bus contention

If key is invalid, this function returns I2C_FAILURE. If pContext is invalid, the results are undefined.

2.10 Reading a Series of Bytes from the I2C bus
The i2c_readbytes() function is used to read a series of bytes from an I2 C bus.

int i2c_readbytes(I2CCONTEXT pContext, I2CKEY key, FxU16 numbytes, FxU8* pbytes, int acklastbyte);

This function returns I2C_SUCCESS or I2C_FAILURE. Possible reasons for failure:
§ Invalid I2CKEY
§ pbytes is NULL
§ Bus contention

If key is invalid, this function returns I2C_FAILURE. If pContext is invalid, the results are undefined.

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 11 December 20, 1999

Confidential

2.11 I2C Primitives
The following functions, while available for use, are deprecated; you should use them only if
absolutely needed (such as with a broken I2C device that requires special attention, like the LCDfx
chip.)

int i2c_getsda(I2CCONTEXT pContext, I2CKEY key);
int i2c_getscl(I2CCONTEXT pContext, I2CKEY key);
int i2c_setsda(I2CCONTEXT pContext, I2CKEY key, int state, FxU8 delay);
int i2c_setscl(I2CCONTEXT pContext, I2CKEY key, int state, FxU8 delay);

The pContext and key parameters have their usual meaning.

The state parameters express the desired state of the SDA or SCL line. A value of 0 means low; any
other value is interpreted to mean high.

The delay parameters express the amount of time, in microseconds, the code should pause after
performing the designated action. These values will be multiplied by the delay multiplier specified in
the call to i2c_getaccess() or i2c_setspeed().

The only reason these functions would fail is if I2CKEY is the wrong key. In the case of failure, the
“get” functions return HIGH, (as this will keep the guilty code from thinking that something has
ACKed its transaction,) and the “set” functions return I2C_FAILURE. Otherwise, the “get” functions
return the correct value (LOW or HIGH,) and the “set” functions return I2C_SUCCESS.

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 12 December 20, 1999

Confidential

3 Configuration and Initialization
Configuration is supported via the files i2cmacro.h, i2csetup.h , and ds_i2c.c. The i2cmacro.h file is used
to define the following macros, that hide OS dependencies

NOTE: This section is only necessary reading for those who need to implement the DS side of the I2C
code.

3.1 Required Entries in i2cmacro.h
This file contains the compile-time portion of the I2 C MRI configuration process.

I2C_DEVINFOPTR(pcontext)
This should equate to the address of an I2C_DEVINFO structure. How this is implemented is up to the
client code. For an operating system that doesn’t provide multi-monitor support, the following may
suffice,

I2C_DEVINFO DevInfoI2C;
#define I2C_DEVINFOPTR(foo) &DevInfoI2C /* foo parameter not used */

whereas a multi-monitor operating system will need to provide something more substantial. The
following is an example for a Windows98 display driver:

#define I2C_DEVINFOPTR(pcontext) ((PI2C_DEVINFO)&((PDEVTABLE)(pcontext))->i2cInfo)

Note that it is OK for such a function to return NULL, on error; the I2C MRI code checks the address
that I2C_DEVINFOPTR equates to, to make sure it is not null before proceeding. Also note that in this
last example, I2C_DEVINFOPTR equates to a function call, not just a function name. It is only used by
the ds_i2c.c file. Client code should not use this macro.

I2C_GETBUSINFO(pcontext, busid)

This macro maps the given I2CCONTEXT and BUSID handles to an I2C_BUSINFO structure. It can be
(and usually is) implemented using the I2C_DEVINFOPTR macro. It is only used by the ds_i2c.c file.
Client code should not use this macro.

I2C_DELAYTIME(usecs)
This macro accepts, as its only parameter, a 32-bit unsigned value expressing the minimum delay time
in microseconds. It should map to a OS-specific function that will delay the current thread for at least
the amount of time specified. It is highly recommended that the specified function yield the time back
to the operating system’s scheduler, rather than spin in a delay loop. It is only used by the ds_i2c.c file.
Client code should not use this macro.

DEBUGI2C(expr, args)
This macro calls “printf##args”if (expr) evaluates to true. Note that it is necessary to pass args to this
macro enclosed in parenthesis, i.e., “DEBUGI2C(error, (“Error #%lu occurred.\n”, error))”

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 13 December 20, 1999

Confidential

3.2 Optional Entries in i2csetup.h

I2C_PEDANTIC
If this macro is defined and nonzero, the I2 C MRI will be more picky about bus errors (i.e., returning
I2C_FAILURE for more reasons,) and will output more debug spew, if debugging output is turned on.
It is generally best to have this turned on. It is turned off by default in ds_i2c.h.

I2C_DEBUGTEXT
If this macro is defined, the I2 C MRI code will output debug text using the I2CDEBUG macro.

I2C_PRINTERPORT
If this macro is defined, the hardware debugging feature of the I2C MRI will be enabled, if
implemented. If it is not implemented, a compilation error will indicate this.

I2C_MAXBUSES
This macro should equate to the maximum number of I2C buses that will be controlled by a single I2C
master. If it is not overridden in i2csetup.h, it will default to a value of 10 in ds_i2c.h

I2C_MAXMUXEN
This macro should equate to the maximum number of I2C muxen that will be controlled by a single
I2C master. If it is not overridden in i2csetup.h, it will default to a value of 10 in ds_i2c.h

I2C_MAXPURPOSES
This macro should equate to the maximum number of purpose Ids that each I2C bus can be associated
with. If it is not overridden in i2csetup.h, it will default to a value of 10 in ds_i2c.h

I2C_STRETCH
This macro indicates how long the I2C code should wait before timing out on a slave device that is
stretching the clock. The total time waiting for a stretched clock to go high will be approximately
equal to

delay*speed*I2C_STRETCH

If it is not overridden in i2csetup.h, it will default to a value of 50 in ds_i2c.h

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 14 December 20, 1999

Confidential

3.3 Initialization
The following describes what your ConfigureI2C() function (located in ds_i2c.c,) should do to
initialize the I2C MRI:

§ Instantiate all buses by calling InstantiateBusI2C(), once for each bus.

§ Call SetUsageI2C() for each bus (using the I2CBUS value returned by InstantiateBusI2C() ,) to
specify what each bus is used for. If a particular bus has more than one applicable usage ID,
you will need to call this function more than once—but you cannot call this function more
than I2C_MAXPURPOSES times per bus. This maximum value can be overridden in the
i2csetup.h file, by defining I2C_MAXPURPOSES as a macro that equates to a number.

§ Instantiate all muxen by calling InstantiateMuxI2C() , once for each mux.

§ Define how some (or all) of the I2C buses bolt up to the muxen, using
AssociateBusToMuxI2C(). As many as I2C_MAXBUSES may be connected to a single mux,
but no bus may be connected to more than one mux. Also, You may call this function as
many times as you need, so long as you do not exceed these limits.

Once you have completed these steps, you will have no more need for the I2CBUS and I2CMUX
values that were returned by InstantiateBusI2C() and InstantiateMuxI2C() , respectively.

The following is a detailed description of the functions mentioned above:

I2CBUS InstantiateBusI2C(I2CCONTEXT pContext, I2C_GETSDA pfGetSDA,
I2C_GETSCL pfGetSCL, I2C_SETSDA pfSetSDA,
I2C_SETSCL pfSetSCL)

This function is used to provide the I2C MRI with 4 functions that control a particular I2C bus.

The pContext parameter has the usual meaning.

All four remaining parameters are pointers to functions that perform the desired actions. The
prototypes for the functions referenced by these parameters must match the following typedefs:

typedef uchar (*I2C_GETSDA)();
typedef uchar (*I2C_GETSCL)();
typedef void (*I2C_SETSDA)(uchar state);
typedef void (*I2C_SETSCL)(uchar state);

On failure, this function returns I2C_NOTABUS. Otherwise, it returns a handle for use with
SetUsageI2C() and AssociateBusToMuxI2C() .

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 15 December 20, 1999

Confidential

int SetUsageI2C(I2CCONTEXT pContext, I2CBUS busid, FxU32 usage)

This function is used to describe to the I2C MRI what the I2C bus (represented by busid) is used for.
This function may be called no more than I2C_MAXPURPOSES times per bus; otherwise it will fail
with the return value I2C_FAILURE. (If you need more per bus, you may override this value in your
i2csetup.h file.) You should view the di_i2c.h file for a complete list of supported usage IDs.

The pContext parameter has the usual meaning.

The busid parameter is a nonzero value returned by the InstantiateBusI2C() function.

The usage parameter is one of the usage ID values documented in section 4.1

This function returns I2C_SUCCESS or I2C_FAILURE.

I2CMUX InstantiateMuxI2C(I2CCONTEXT pContext, I2C_SETMUX pfMux)
This function is used to provide the I2C MRI with a function that controls a particular mux.

The pContext parameter has the usual meaning.

The pfMux parameter is a pointer to a function that perform the desired action. The prototype for the
function referenced by this parameter must match the following typedef:

typedef void (*I2C_SETMUX)(FxU32);

On failure, this function returns I2C_NOTAMUX. Otherwise, it returns a handle for use with
AssociateBusToMuxI2C().

int AssociateBusToMuxI2C(I2CCONTEXT pContext, I2CBUS busid, I2CMUX
muxid, FxU32 muxtoken)

This function is used to describe to the I2C MRI how an I2 C bus relates to a mux. It is not necessary to
call this function if the I2C bus is not controlled via a mux.

The pContext parameter has the usual meaning.

The busid parameter is a nonzero value returned by the InstantiateBusI2C() function.

The muxid parameter is a nonzero value returned by the InstantiateBusI2C() function.

The muxtoken parameter is a nonzero value that instructs the mux function (corresponding to muxid,)
how to switch to the appropriate position for this bus.

This function returns I2C_SUCCESS or I2C_FAILURE.

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 16 December 20, 1999

Confidential

4 Data Structures, Types and Constants

4.1 Device-Independent Data Structures, Types, and Constants

I2CBUS (di_i2c.h)
This is a 32-bit value indicating the ID of the bus being referenced. It is returned by
InstantiateBusI2C() , for use with SetUsageI2C() and AssociateBusToMuxI2C() .

I2CMUX (di_i2c.h)
This is a 32-bit value indicating the ID of the mux being referenced. It is returned by
InstantiateMuxI2C(), for use with AssociateBusToMuxI2C() .

I2CKEY (di_i2c.h)
This is a 32-bit value that specifies which I2C bus is being used, and also serves as a lock for that
particular bus (and, if applicable, the associated mux). The most significant byte of this value indicates
the ID of the bus being used (essentially an I2CBUS value.) The remaining bits are the lock value for
the bus. A value of I2C_NOTAKEY indicates an invalid value.

I2C_NOTAPURPOSE
Used internally.

I2C_TVENCODER
This is a usage ID, indicating that a TV encoder is attached to the bus.

I2C_MONITORDDC
This is a usage ID, indicating that a particular bus is used for DDC communications with a CRT.

I2C_MULTIMEDIA
This is a usage ID, indicating that bus contains WDM-supported devices, such as tuners and video
decoders.

I2C_FLATPANELDDC
This is a usage ID, indicating that a particular bus is used for DDC communications with a digital flat
panel.

I2C_SERIALEEPROM
This is a usage ID, indicating that a serial EEPROM is attached to the bus.

I2C MRI
I2C Modularized Reference Implementation Document

Revision 1.0

Copyright 1999 3dfx Interactive, Inc. Revision 1.0
Proprietary and Preliminary 17 December 20, 1999

Confidential

I2C_LPTDEBUGGING
This is a usage ID, indicating that this bus is actually the system’s parallel port. This can be useful for
using a secondary machine to poke I2C commands into an I2C bus on another machine. A custom
cable must be made to support this feature. A bus claiming this usage ID will only be present if
I2C_PRINTERPORT is defined.

More usage IDs will be assigned as needed.

4.2 Device-Specific Data Structures, Types, and Constants
It should not be necessary for an MRI client to access any of the data structures, types, or constants
defined in the ds_i2c.h file.

