
Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 1 June 9, 2000
 Confidential

3dfx Interactive
Central Services API Reference Document

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 2 June 9, 2000
 Confidential

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 3 June 9, 2000
 Confidential

0 Contents
0 CONTENTS .. 3

0.1 REVISION HISTORY.. 5
0.2 ISSUES.. 6

1 INTRODUCTION... 7

1.1 HISTORICAL CONTEXT... 7
1.2 CENTRAL SERVICES CLIENTS... 8

1.2.1 Client state machine.. 8
1.3 LITMUS TESTS ... 10

1.3.1 Hardware Litmus Test... 10
1.3.2 Software Litmus Test ... 10

1.4 REQUIREMENTS ... 11
1.4.1 Provide Information about the System Configuration... 11
1.4.2 Provide Memory Management for All Types of Surfaces.. 11
1.4.3 Initialize Hardware for Rendering.. 12
1.4.4 Initialize Command Transport to Enable Rendering .. 12
1.4.5 Initialize Video for Rendering... 12
1.4.6 Get Rendered Pixels to the Screen .. 12
1.4.7 Command Execution ... 12
1.4.8 Reading Hardware Registers .. 13

2 FUNCTIONAL OVERVIEW .. 14

2.1 CSINIT.. 15
2.2 CSUNINIT... 16
2.3 CSGETPROTOCOLREVISION ... 17
2.4 CSGETGRAPHICALCONTEXT.. 18
2.5 CSREGISTERSTATECALLBACK... 19
2.6 CSALLOC ... 20
2.7 CSFREE .. 21
2.8 CSSETVIDEOMODE.. 22
2.9 CSACQUIREOVERLAY .. 23
2.10 CSSWAPBUFFERTODISPLAY .. 24
2.11 CSEXECUTECOMMANDS .. 25
2.12 CSLOCK ... 26
2.13 CSUNLOCK... 27
2.14 CSDEBUGGETSTRINGFORERROR .. 28
2.15 CSRELEASEGRAPHICALCONTEXT.. 29

3 DATA STRUCTURES / DATA TYPES ... 30

3.1 CSINIT.. 30
3.2 CSGRAPHICALCONTEXT .. 31
3.3 PCSCALLBACK.. 32
3.4 CSCHIPSPECIFICDATA .. 33
3.5 CSSST2... 34
3.6 CSDEVICECONFIG .. 36
3.7 CSALLOCATIONDESCRIPTOR.. 37
3.8 CSVIDEOMODE ... 39
3.9 CSOVERLAY... 40

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 4 June 9, 2000
 Confidential

3.10 CSSWAPBUFFERTODISPLAY ... 41

4 APPENDICES... 42

4.1 FAQ .. 43
4.1.1 Why must a CS client still use csExecuteCommands when in Exclusive Mode? Isn’t it safe to
write directly to the cmdfifo registers in that situation? ... 43
4.1.2 Why does the CS client library and/or server trap my CS client’s window messages?......... 43
4.1.3 Do I have to call csSwapBufferToDisplay if I have an overlay resource, and am using it to
display my rendered buffers?.. 43
4.1.4 Is the callback necessary?... 43
4.1.5 When I have an overlay resource, and am using to to display my rendered buffers, can I
insert the buffer swap packets into the command fifo? ... 44

4.2 GLOSSARY ... 45
4.2.1 Exclusive Mode ... 45
4.2.2 Primary Surface .. 45
4.2.3 Command Buffer ... 45
4.2.4 Sentinel Buffer... 45
4.2.5 State Restoration Buffer .. 45

4.3 CLIENT-MANAGED TEXTURE HEAPS ... 46
4.4 DEBUGGING... 47

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 5 June 9, 2000
 Confidential

0.1 Revision History
Revision Description Date

0.1 --Draft received from Chris Dow 000209
0.2 --Reformatted to make maintenance easier. Miscellaneous omissions

and errors corrected. “Issues” section added.
000209

0.3 --Fixed omission in csGetCSContext, added CS_BUFFER_ZBUFFER
and a few new error codes to csAlloc, Made 3DLFB in csLock a flag,
just like …READ and …WRITE, and fixed miscellaneous errata. Also
changed the naming schemes of some of the macros, to make them
more consistent. Didn’t un-highlight the changes from 0.2, since 0.2
never made it into StarTeam.

000214

0.4 (No description of changes)

000224

0.5 Major overhaul of document to reflect evolutionary changes in the
spec.

000609

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 6 June 9, 2000
 Confidential

0.2 Issues
!" Need to add an explanation of the encapsulating transport structure

!" When a lock is held on a surface across a mode-change whatever area of the LFB the writing was
going to may cause minor display corruption.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 7 June 9, 2000
 Confidential

1 Introduction
Our business requires fully functional GDI, DirectDraw™, Direct3D™, and OpenGL™ drivers on
Windows 98 and NT; fully functional X and OpenGL drivers on Linux; and fully functional
QuickDraw™ and OpenGL drivers on the Macintosh. This means that all must work concurrently, and
changes one piece makes to the system must be handled gracefully by the other pieces.

The intended audience of this document is software engineers who need to understand the Central
Services API.

1.1 Historical Context
In the past, this was done by cooperation between the Windows driver software and Glide/OpenGL.
This worked reasonably well (with some problems having to do with tiled vs. linear memory) for the
case where Glide is cooperating with the Windows driver software by writing a command buffer then
making a call through ExtEscape() to execute it. However, when Glide operated in full-screen mode—
needing full control of the hardware—we encountered unsolvable problems.

These problems arose from Glide’s need to have exclusive access to the hardware for some period of
time. During this time, Glide reprogrammed the command FIFO hardware to monitor writes to an area
of memory. There was no coordination with the display driver, and if a catastrophic event like an alt-
tab or a BSOD occurred there was no mutual understanding of memory layout in the frame buffer.
This sometimes resulted in Glide depositing command traffic on the desktop, and sometimes even
system hangs. The workaround for this problem is unacceptable to many parties—Microsoft’s WHQL
team being one of them.

Thus, we concluded that there needs to be a more cooperative way for APIs that do not reside in the
display driver to access the hardware.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 8 June 9, 2000
 Confidential

1.2 Central Services Clients
Any API that enables hardware-accelerated rendering (GDI, Direct3D, OpenGL, Glide, X, and
QuickDraw) or that enables applications to write to video memory (DirectDraw) must use some piece
of Central Services. However, the level of utilization will differ between APIs in the display driver
and APIs that exist outside it. For example, the Central Services driver interface will use the same
pieces of code in the display driver that other subsystems may already use, while all subsystems will
use the memory allocator.

1.2.1 Client state machine
The following is a rough outline of the general flow and operation of a Central Services client.

• Call csInit() to initialize the Central Services interface, and establish a connection to the server.

• Call csGetProtocolRevision() to determine compatibility level with the server.

• Call csGetGraphicalContext() to associate a CS context with the client’s window, and to register a
state callback function that Central Services will use to inform the client of asynchronous events
that affect the operation of the client.

• Call csAlloc() to allocate any and all persistent buffers that will be needed during the client’s
lifetime. Persistent buffers include command fifo buffers, and sentinel buffers. (Note: although it
is not absolutely necessary to claim all these buffers at the outset, it is highly advisable that clients
do so, prior to allocating other types of buffers. Otherwise, the client may not be able to obtain all
of the persistent space it requires.)

• Call csAcquireOverlay(), to attempt to acquire an available hardware overlay resource. While not
completely necessary for operation, using an overlay resource can greatly increase the rasterization
performance of what the client renders.

Assuming that the underlying hardware has overlay capabilities, the only way a CS client will fail
to obtain this overlay resource is if another software entity (CS client or otherwise) already has it.
However, that other entity will lose its overlay if the first CS client: (rvb)

!" Obtains the window focus
!" Achieves exclusivity

But since one of the requirements of Exclusive Mode is ownership of focus, this essentially means
that all that is required for ownership of the overlay is for the window to have focus.
Unfortunately, due to the asynchronous nature of the focus message, the client can’t track this state
itself; Central Services must do this on its behalf. (rvb)

Double buffering and overlays: Perhaps the only downside to overlays is that they complicate
double buffering a little, and the clients must be smart about reading the rendered surface, when an
overlay resource is used. The following is a brief description of how double buffering must be
done in various circumstances:

rbissell
The veracity of this statement hinges somewhat on whether we can steal the overlay from DirectDraw. I will research this. If we can’t, then the statement only applies to CS clients. UPDATE: Xing Cong tells me that the only time it is OK to steal an overlay from DirectDraw is after a mode change, which essentially means that we can’t do it. Thus, we have to consider DirectDraw as having priority over CS clients, when it comes to resources like overlays. HOWEVER… there may be some benefit in researching the possibility of causing an innocuous mode change—this may be sufficient in getting DirectDraw to release its resources. But this is definitely not a first-pass item.

rbissell
The reason is that the previous owner must be notified first, because it (the previous owner) may have already generated fifo commands that assume ownership of the overlay. So the server must hook the WindowProc of all clients, and-regardless of whether it receives a "focus lost" message first, or a "focus gained" message first-it must notify the loser first, give it time to drain its pipeline, and then notify the winner that it has acquired focus.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 9 June 9, 2000
 Confidential

!" Exclusive Mode, no overlay: The client’s window region on the primary is
considered the front buffer. The content of the off-screen back buffer is blitted to the
front buffer, against a clip-list, and preferably during vertical retrace.

One might think one could simply change the hardware’s “start of primary” offset
register each frame, to alternate between two identically-sized buffers. Ordinarily
this would be a keen idea, as it would allow us to avoid blitting, even when the
underlying hardware doesn’t have an overlay resource. However, two key factors
make this a Bad Idea™:

• If the client were to lose exclusivity, it would have to guarantee that it exits Exclusive Mode
with the “start of primary” offset register pointing at the primary surface. Otherwise the other
apps would end up drawing to the wrong area of the frame buffer.

• Even if the client could make the preceding guarantee, it’s still a Bad Idea™ on MS Windows
platforms. A few OpenGL apps utilize GDI for their menu subsystems, and GDI was not
designed with double buffering in mind. Thus, half of what GDI attempted to draw would end
up on the back buffer, and half would end up on the front buffer. Not good.

!" Exclusive Mode, with overlay: For all intents and purposes, this can only be done via
triple buffering. The front buffer is the destination rectangle of the overlay resource,
which (hopefully!) coincides with the entire primary surface. The “start of overlay
source” register is changed each frame (preferably at vsync time) to alternate
between the two identically-sized back buffers. The primary surface must be filled
with the correct colorkey value. The WM_PAINT message handler must fill in the
specified regions with the colorkey value, as well.

!" Windowed Mode, no overlay: The client’s window region on the primary is
considered the front buffer. The content of the off-screen back buffer is blitted to the
front buffer, against a clip-list, and preferably during vertical retrace.

!" Windowed Mode, with overlay: For all intents and purposes, this can only be done
via triple buffering. The front buffer is the destination rectangle of the overlay
resource, which (hopefully!) coincides with the client region of the CS client’s target
rendering window. The “start of overlay source” register is changed each frame
(preferably at vsync time) to alternate between the two identically-sized back buffers.

• Call csAlloc() to acquire any back buffers, z-buffers, texture heaps, etc., that are known to be
needed for the rendering process.

• Render a frame, or a portion thereof. The output of the CS client’s rendering process is command
fifo traffic, which the client writes sequentially into a (previously allocated) command fifo buffer.
When the command fifo buffer is almost full, the client should “top it off” with a command packet
that writes a serial number into a (previously allocated) sentinel buffer.

• Call csExecuteCommands(), to request that the server insert the command packets into the
underlying hardware’s command fifo. (The server may accomplish this by either a direct
memcpy, or by appending a “RET” command packet to the end of the fifo buffer, and inserting a
“JSR” packet into the actual command fifo, instructing the hardware to treat the command buffer
as a subroutine.)

Because multiple processes could be sharing the same hardware resources, it’s possible for the
hardware state to become dirty.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 10 June 9, 2000
 Confidential

1.3 Litmus Tests
Central Services’ charter is to be the referee between its clients and other discrete, independent
subsystems, all competing for the same resources. But it aims to fulfill this responsibility with a
minimal amount of interference; it tries to stay out of its clients’ way, whenever possible, only getting
involved if it is necessary to do so.

With this charter in mind, the following litmus tests for new functionality fomented in the minds of its
creators, during the evolution of this specification. These litmus tests are what guide the decision to
add (or refrain from adding) a new responsibility to Central Services.

1.3.1 Hardware Litmus Test

• Does the task involve the use of a limited or shared resource that requires arbitration for fair
use between competing clients?

• Is there no safe mechanism or methodology by which the clients can perform this arbitration
process amongst themselves and on their own, without danger of race conditions or other
forms of resource contention? (rvb)

If the answer to both questions is yes, then the task fails the hardware litmus test, and therefore falls
under the auspices of the Central Services charter. Thus, it should be handled by the Central Services
server on behalf of its clients.

Now, this is not to say that Central Services needs to (or even should) handle all of it’s responsibilities
the same way. For any given resource that requires arbitration, Central Services could choose to use
any of the following, (or others) based upon performance needs:

• OS-specific call gate (i.e. ExtEscape on Win32, Server extension on X)
• Named pipe, provided by Central Services on behalf of the clients
• Shared memory region, provided by Central Services on behalf of the clients

1.3.2 Software Litmus Test
This is really more of a guideline than a litmus test. If the source code for a client is intended to be usable
under multiple operating systems, but one of those operating systems has a particular quirk about it that has
to be special cased, it may make sense to hide that quirk under the abstractions provided by the Central
Services API. (i.e., let CS handle it.) However, it doesn’t seem prudent to hide “one-offs” at the expense
of performance. So these cases will have to be dealt with individually.

rbissell
The answer to this question may vary from OS to OS (even though this question pertains to hardware resources.)

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 11 June 9, 2000
 Confidential

1.4 Requirements
The purpose of this section is to simply state the needs that Central Services must fulfill. Once these
are clear, this section can be used to guide later steps in the design process.

All APIs that use hardware to accelerate 3D graphics perform the following services:

• Get info about the system configuration
• Get some memory for rendering and textures
• Initialize hardware for rendering
• Initialize command transport to enable rendering
• Initialize video for rendering
• Get rendered pixels to the screen
• Generate and execute rendering commands
• Occasionally read from the hardware to make sure it’s performed requested operations
• Respond to system events that may corrupt their state

This is the most concise definition of the requirements for Central Services. Most of this already exists
in the various drivers for various platforms. Central Services provides access to that functionality and
coordinates between the various APIs that may wish to do that at the same time.

Note that in the descriptions below, the above functions are condensed in cases where they overlap
(memory allocation, for example).

1.4.1 Provide Information about the System Configuration
Central Services provides client APIs with all information they need to return to their client programs
and that they may need to make decisions that are dependent upon configuration. This includes:

• Revision of Central Services protocol
• Type of device
• Amount of memory available on the device
• Information regarding the revision of the device which may be necessary for bug

workarounds, etc.

Central Services does not provide any information that could be deduced by the client from the
information listed above.

1.4.2 Provide Memory Management for All Types of Surfaces
Client APIs and the driver APIs use Central Services for allocating memory for desktops render buffers
font/bitmap caches, textures, and command buffers. This ensures that no API will have memory
conflicts with another. In some cases, the memory is typed—meaning it is either tiled or liner, etc. In
these cases (where legal), Central Services can be requested to return memory from a particular pool or
which has been marked as a particular type via a mechanism such as content-addressable memory
(CAM).

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 12 June 9, 2000
 Confidential

1.4.3 Initialize Hardware for Rendering
In many cases, the hardware will already be initialized by the system BIOS or by the display driver.
Thus, no further initialization is necessary. However, full-screen applications may wish to enable more
exotic features such as Scan-Line Interleaving. Central Services provides the mechanism to do this.
Note that assertion of default 3D state is not a service that Central Services provides.

1.4.4 Initialize Command Transport to Enable Rendering
Client APIs use Central Services to allocate space for storing commands, initialize whatever hardware
state must be initialized for using that space.

1.4.5 Initialize Video for Rendering
In many cases (such as OpenGL on W9x/NT), the video mode is already set to what the application
wants. However, on certain operating systems, triggers must be cocked so that the driver may recover
if the application wishes to run full-screen and later loses it through a catastrophic system event or task
switch. An example is the case where the CS client needs to use the video overlay registers, but does
not need to change the depth, resolution, or refresh rate (video mode) from it’s current state. A task
switch or other event could cause Windows to revert to the desktop. In this case, Windows would
(erroneously) conclude that the video hardware needed no programming in order for the desktop to be
displayed. The result is that the user perceives a hang. It is the responsibility of Central Services to
set any triggers and ensure the application is running with the desired video mode.

1.4.6 Get Rendered Pixels to the Screen
In the windowed case, there are two safe ways of getting rendered pixels to the screen: video overlays
and blits. Video overlays must be managed, as they are a scarce resource. Central Services provides a
way for any API to use them, and tracks their availability. In order for blits to occur properly, they
must be done by a subsystem that has access to a given window’s clip list. Thus, Central Services
provides functionality which enables the client app to request that a surface be blitted to a window with
the proper clipping.

1.4.7 Command Execution
Central Services provides the client application with non-volatile space to place commands. This
means that mode changes, task switches, other APIs, etc. will not corrupt the space given to the client.
It is Client’s responsibility to divide that space up into sections for sequential use.

In the case of state corruption (another API has run since the last time the CS client has executed
commands), Central Services informs the client (via a return status) that it needs to restore its state.
Further CS provides information to the client regarding whether register or memory state has been
corrupted so the client can know what is required to continue.

Central Services provides the client with another non-volatile place to which the hardware can render
for use as a sentinel buffer. The client is then responsible for generating command packets that write a
serial number to this buffer for use in determining which subdivisions of the command area are free for
reuse.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 13 June 9, 2000
 Confidential

1.4.8 Reading Hardware Registers
If any hardware registers must be read during normal operation, it is the responsibility of Central
Services to provide that capability to the client API. This bottlenecks reads and insures they do not
interfere with the operation of any other APIs. However, given the nature of the cooperation between
driver and non-driver APIs, functions like idle, etc. are performed by reading the sentinel buffers
described above.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 14 June 9, 2000
 Confidential

2 Functional Overview
Central Services is simply a unified method for gaining access to the hardware and for informing one
subsystem that another has caused a situation that requires reaction (such as losing a surface or
context). In order to prevent race conditions that can arise when non-kernel APIs are sharing the
hardware with kernel APIs, certain types of access must be synchronized. In the Central Services
model, the display driver owns the hardware. All code that allocates memory, initialize hardware,
programs command transport, or performs video programming lives in the display driver. Central
Services simply provides a non-kernel API with the ability to use the same code the kernel APIs use
and provides a level of coordination between the kernel and non-kernel APIs.

This section states how Central Services will address the requirements listed above by describing the
protocol and APIs used to perform operations. Each entry in this section will describe both the
interface that the client uses, and the interface that the Central Services Client Library uses to
communicate with the Central Services Server. The Central Services Client Library packs the
information that the Client provides into transport structures, before sending them to the server via a
system-dependent communications channel. On Windows platforms, it is transported between the
Central Services client and display driver using the ExtEscape() function. On Linux, the channel is an
X extension, and on the Mac, some voodoo weirdness occurs.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 15 June 9, 2000
 Confidential

2.1 csInit
Initialize the Central Services client library. This must be called once for each application. This
function is not process or thread specific.
CSRESULT FX_CALL csInit(PCSINIT psInit)

!" psInit: The memory address of a CSINIT structure. This structure is OS-specific.

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome

CSINIT_APIERROR_ALREADYINITIALIZED The system has already been initialized for client associated
with the given CSINIT structure..

CSINIT_APIERROR_DIRECTDRAWFAILED (Win32) could not initialize DirectDraw

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 16 June 9, 2000
 Confidential

2.2 csUnInit
Un-Initialize the Central Services client library. For now, this function is just used for bookkeeping.
CSRESULT FX_CALL csUnInit(FxVOID)

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome
CS_APIERROR_SYSTEMNOTINITIALIZED The system was never initialized with csInit()

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 17 June 9, 2000
 Confidential

2.3 csGetProtocolRevision
Returns the major and minor revision numbers of the Central Services protocol, as supported by the
server. This request is used by the Central Services client to determine if there is sufficient
compatibility between the client and the client-library/server pair, in order to proceed.
CSRESULT FX_CALL csGetProtocolRevision(

CSWINDOWID idWindow,
FxU32* pu32Major,
FxU32* pu32Minor);

• idWindow: The window ID of the Central Services client. This datatype is OS-specific. (For
WIN32 clients, this was passed to the client as the first parameter of its registered window
message handling procedure.)

• pu32Major: The memory address at which the server should store the major revision of the
protocol (CS_PROTOCOL_MAJOR). If the major revision of the client and the display driver
do not match, no functionality is guaranteed.

• pu32Minor: The memory address at which the server should store the minor revision of the
protocol (CS_PROTOCOL_MINOR). If the minor revision of the server is greater than or
equal to the minor revision of the client, then all functionality known to the client is
guaranteed to work (assuming the major revisions match.) If the minor revision of the server
is less than the minor revision of the client, then there is not sufficient compatibility to run.

Note: Generally, the client-library is thought of as a “dumb pipe” that abstracts the OS-specifics of
connecting to the Central Services server. However, in some cases, some of the server-side
implementation may actually be implemented in the Client Library, rather than in the Server itself. (A
notable examples would be the fact that portions of csSwapBufferToDisplay() are implemented in the
client-library.) When this occurs, the client-library must qualify itself against the server, in addition to
the normal activity of passing this information on to the client, so that the client can do the same.

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome
CS_APIERROR_INVALIDPARAM An invalid parameter was passed in.
CS_APIERROR_SYSTEMNOTINITIALIZED The system was never initialized with csInit()
CS_APIERROR_SERVERFAILEDEXTESCAPE The server returned a server-specific error code.
CS_APIERROR_SYSTEMFAILEDEXTESCAPE (WIN32) The ExtEscape() system call failed

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 18 June 9, 2000
 Confidential

2.4 csGetGraphicalContext
Returns information about the physical configuration of the device on which the Central Services client
will run. Central Services uses the supplied window ID to identify the appropriate device.
CSRESULT FX_CALL csGetGraphicalContext(

CSWINDOWID idWindow,
PCSGRAPHICALCONTEXT psGraphicalContext);

!" idWindow: The window ID of the Central Services client. For win32 clients, this was passed
to the client as the first parameter of its registered window message handling procedure.

!" psGraphicalContext: The memory address of a client-supplied CSGRAPHICALCONTEXT
structure, to be filled in by the server and/or client library. The client will use this as a handle
when calling all higher-level Central Services functions.

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome
CS_APIERROR_INVALIDPARAM An invalid parameter was passed in.
CS_APIERROR_SYSTEMNOTINITIALIZED The system was never initialized with csInit()
CS_APIERROR_SERVERFAILEDEXTESCAPE The server returned a server-specific error code.
CS_APIERROR_SYSTEMFAILEDEXTESCAPE (WIN32) The ExtEscape() system call failed

CS_APIERROR_OUTOFMEMORY
The server could not obtain enough system memory to
create and initialize the data structures needed to
support this new context.

CS_APIERROR_INVALIDCHIPTYPE The server returned a chip type that the client library
didn’t recognize.

CS_APIERROR_GRAPHICALCONTEXTINITIALIZED The CSGRAPHICALCONTEXT structure referenced by
psGraphicalContext appears to already be initialized.

CSGETGRAPHICALCONTEXT_APIERROR_IDWIND
OWASSIGNEDTOGRAPHICALCONTEXT

Only one graphical context is allowed per each
CSWINDOWID.

CSGETGRAPHICALCONTEXT_APIERROR_CANTCR
EATECLIPPER

(WIN32) DirectDraw wouldn’t return a ‘this’ pointer to
a Clipper object.

CSGETGRAPHICALCONTEXT_APIERROR_CANTAS
SOCIATEWINDOWTOCLIP

(WIN32) DirectDraw reported an error when attempting
to associate ‘idWindow’ with the Clipper object

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 19 June 9, 2000
 Confidential

2.5 csRegisterStateCallback
(rvb)

Occasionally, events outside a client’s control will cause it to lose (or gain) access to the hardware.
Central Services monitors the system for these type of events, and uses a client-supplied callback
function to inform clients of changes in their status.
CSRESULT FX_CALL csRegisterStateCallback(

CSWINDOWID idWindow,
PCSCALLBACK pExclusiveCallback);

!" idWindow: The window ID of the Central Services client. For win32 clients, this was passed
to the client as the first parameter of its registered window message handling procedure.

!" pExclusiveCallback: The memory address of a client-supplied callback function that
conforms to the PCSCALLBACK function datatype.

Note: Clients can’t monitor this for themselves, because not only does a client have to be notified that
it’s gained exclusivity, the previously exclusive app has to be told that it lost it. Due to the
asynchronous nature of window messages under Win9x, it cannot be guaranteed that the loser will be
notified before the new owner (which is essential.) This means that exclusivity checking fails the
Software Litmus Test, and therefore must be handled by Central Services (which has enough state
information to notify the loser first, even if it receives the window messages in the wrong order.)

rbissell
This is a proposed addition to the Central Services spec. It has not yet been ratified. It probably makes more sense to just add a “pExclusiveCallback” field to the CSGRAPHICALCONTEXT structure.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 20 June 9, 2000
 Confidential

2.6 csAlloc
Allocates a memory buffer of the specified type and dimensions. This request is used to allocate any
type of graphics memory a that would normally be used by a display driver. (Buffer type and memory
type are separated because certain types of buffers can be in either tiled or linear memory in the frame
buffer, or in AGP memory on the system.) Note that—in general—the server and client library make
no attempt to enforce the designated use of this buffer. It is considered perfectly legal for the client to
use the buffer for a purpose other than the intent it declared at csAlloc time. Exception: on SST2, a
surface allocated with ‘u32UseSLI’ set (nonzero) must NOT be used for non-SLI rendering, and
vice versa. Buffers can be placed in either local frame buffer memory or AGP memory. However, on some
hardware, rendering to AGP is not supported, thus this operation can fail. The Central Services client should
use the device ID (obtained from) to determine if the part is capable of rendering to-- or texturing from--
AGP memory.
CSRESULT FX_CALL csAlloc(

PCSGRAPHICALCONTEXT psGraphicalContext,
PCSALLOCATIONDESCRIPTOR psAllocationDescriptor);

!" psGraphicalContext: The memory address of a CSGRAPHICALCONTEXT structure, that
serves as a context handle. This handle was initialized and returned to the client when it
called csGetGraphicalContext().

!" psAllocationDescriptor: The memory address of a client-supplied
CSALLOCATIONDESCRIPTOR structure. Some of the fields in this structure will be
initialized by the client prior to calling this function; others will be initialized by the server, as
a result of the call.

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome
CS_APIERROR_INVALIDPARAM An invalid parameter was passed in.
CS_APIERROR_SYSTEMNOTINITIALIZED The system was never initialized with csInit()
CS_APIERROR_SERVERFAILEDEXTESCAPE The server returned a server-specific error code.
CS_APIERROR_SYSTEMFAILEDEXTESCAPE (WIN32) The ExtEscape() system call failed
CS_APIERROR_INVALIDCONTEXT The context ID passed in is not that of a valid context.
CS_APIERROR_INVALIDPARAM An invalid parameter was passed in.

CS_APIERROR_OUTOFMEMORY

The server could not obtain enough system memory to
create and initialize the data structures needed to
support this new buffer, or the server could not find a
chunk of video memory big enough to satisfy the
allocation request.

CS_APIERROR_ALLOCATIONDESCRIPTORINITIALI
ZED

The allocation descriptor passed in by the client appears
to already be initialized for another valid surface.

CSALLOC_APIERROR_INVALIDCOMB Invalid combination of buffer type and memory type.

CSALLOC_APIERROR_INVALIDSIZE The buffer size requested is not supported with the buffer
and memory types that were specified.

CSALLOC_APIERROR_INVALIDMEMORYTYPE The ‘u32MemType’ field has an invalid or unsupported
value.

CSALLOC_APIERROR_INVALIDLOCALE The ‘u32Locale’ field has an invalid or unsupported
value.

CSALLOC_APIERROR_INVALIDBUFFERTYPE The ‘u32BufferType’ field has an invalid or unsupported
value.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 21 June 9, 2000
 Confidential

2.7 csFree
Frees a buffer, previously allocated with csAlloc() .
CSRESULT FX_CALL csFree(

PCSGRAPHICALCONTEXT psGraphicalContext,
PCSALLOCATIONDESCRIPTOR psAllocationDescriptor);

!" psGraphicalContext: The memory address of a CSGRAPHICALCONTEXT structure, that
serves as a context handle. This handle was initialized and returned to the client when it
called csGetGraphicalContext()

!" psAllocationDescriptor: The memory address of a client-supplied
CSALLOCATIONDESCRIPTOR structure, previously initialized by csAlloc().

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome
CS_APIERROR_INVALIDPARAM An invalid parameter was passed in.
CS_APIERROR_SYSTEMNOTINITIALIZED The system was never initialized with csInit()
CS_APIERROR_SERVERFAILEDEXTESCAPE The server returned a server-specific error code.
CS_APIERROR_SYSTEMFAILEDEXTESCAPE (WIN32) The ExtEscape() system call failed
CSFREE_APIERROR_STILLLOCKED The client attempt to free a surface for a lock was active.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 22 June 9, 2000
 Confidential

2.8 csSetVideoMode
(rvb)

Central Services clients use csSetVideoMode function sets the video mode as specified by its
arguments. If the mode is not supported by the display driver/graphics device/monitor combination, the
mode will not be set. Further, the requested refresh rate is merely a suggestion on Windows platforms, as
WHQL dictates that the driver must obey the settings in the video control panel. Note that only a client
running in exclusive mode may set the video mode.
CSRESULT FX_CALL csSetVideoMode(

PCSGRAPHICALCONTEXT psGraphicalContext,
PCSVIDEOMODE psVideoMode);

!" psGraphicalContext: The memory address of a CSGRAPHICALCONTEXT structure, that
serves as a context handle. This handle was initialized and returned to the client when it
called.

!" psVideoMode: The memory address of a CSVIDEOMODE structure, containing a description
of the desired video mode.

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome
CS_APIERROR_INVALIDPARAM An invalid parameter was passed in.
CS_APIERROR_SYSTEMNOTINITIALIZED The system was never initialized with csInit()
CS_APIERROR_SERVERFAILEDEXTESCAPE The server returned a server-specific error code.
CS_APIERROR_SYSTEMFAILEDEXTESCAPE (WIN32) The ExtEscape() system call failed

CSSETVIDEOMODE_APIERROR_UNSUPPORTEDRES

Either there is not enough frame buffer memory to
support the requested resolution, or the combination of
width, height, and color depth requested are not
supported by the display adapter/monitor/driver
combination.

CSSETVIDEOMODE_STATUS_BADREFRESH
The video mode was changed to the requested
resolution, but at a different refresh rate than the one
requested.

CSSETVIDEOMODE_APIERROR_NOTFULLSCREEN The context associated with the request is not full-
screen

CSVIDINIT_ERROR_UNSUPPORTEDRES The width and height are not supported by the display
adapter/monitor/driver combination.

CSSETVIDEOMODE_APIERROR_AAUNSUPPORTED The hardware in question does not support antialiasing

rbissell
This function is apocryphal. It may be removed at a later date.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 23 June 9, 2000
 Confidential

2.9 csAcquireOverlay
Central Services clients use csAcquireOverlay (rvb) to obtain ownership of an overlay hardware
resource, if one is available. An error will result if all hardware overlay resources are in use, and the
calling CS client is not running in exclusive mode. Server specific: If the calling CS client is in
exclusive mode, and all available overlays are in use, then an overlay may be taken away from another
app to satisfy the needs of the calling CS client. But this is entirely the server’s call.

Within the context of Central Services, overlays are useful for:

• multi-buffering to a window (underlay)
• displaying video clips (underlay)
• imposing a mask over a rendered image (overlay)

CSRESULT FX_CALL csAcquireOverlay(
PCSGRAPHICALCONTEXT psGraphicalContext,
PCSOVERLAY psOverlay);

!" psGraphicalContext: The memory address of a CSGRAPHICALCONTEXT
structure, that serves as a context handle. This handle was initialized and returned to
the client when it called.

!" psOverlay: The memory address of a CSOVERLAY structure, used to describe the
acquired overlay.

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome
CS_APIERROR_INVALIDPARAM An invalid parameter was passed in.
CS_APIERROR_SYSTEMNOTINITIALIZED The system was never initialized with csInit()
CS_APIERROR_SERVERFAILEDEXTESCAPE The server returned a server-specific error code.
CS_APIERROR_SYSTEMFAILEDEXTESCAPE (WIN32) The ExtEscape() system call failed
CSACQUIREOVERLAY_APIERROR_UNSUPPORTED The hardware has no overlay support
CSACQUIREOVERLAY_APIERROR_OVERLAYBUSY Another client or process has ownership of the overlay

rbissell
I’m referring to both overlays and underlays collectively as overlays.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 24 June 9, 2000
 Confidential

2.10 csSwapBufferToDisplay
Central Services clients use csSwapBufferToDisplay to copy data from a CS render buffer to the
screen, when no overlay is available. To this end, csSwapBufferToDisplay will use the blit engine of
the hardware to blit the offscreen render target onto the window, honoring any clip information that the
OS provides.

As this solution is obviously not optimal, the client should first determine if a hardware overlay
resource is available (via csAcquireOverlay(),) and if so, use it instead. (rvb)

When the source rectangle and the destination rectangle are different sizes, csSwapBufferToDisplay
will either shrink or stretch the data to fit—using the differences in size to determine the scaling
factor(s). If either stretch or shrink is indicated, the interpolationType variable is used to specify
whether point sampling or bilinear interpolation is used. If the extents of the destination rectangle
reach beyond the destination window, the blit is clipped. Furthermore, the blit is clipped as indicated
by the display driver’s clip list. csSwapBufferToDisplay will also attempt to color convert, if
necessary and possible.
CSRESULT FX_CALL csSwapBufferToDisplay(

PCSGRAPHICALCONTEXT psGraphicalContext,
PCSSWAPBUFFERTODISPLAY psSwapBufferToDisplay)

!" psGraphicalContext: The memory address of a CSGRAPHICALCONTEXT
structure, that serves as a context handle. This handle was initialized and returned to
the client when it called.

!" psSwapBufferToDisplay: The memory address of a CSSWAPBUFFERTODISPLAY
structure, containing information about the source and destination surfaces.

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome
CS_APIERROR_INVALIDPARAM An invalid parameter was passed in.
CS_APIERROR_SYSTEMNOTINITIALIZED The system was never initialized with csInit()
CS_APIERROR_SERVERFAILEDEXTESCAPE The server returned a server-specific error code.
CS_APIERROR_SYSTEMFAILEDEXTESCAPE (WIN32) The ExtEscape() system call failed
CS_APIERROR_INVALIDWINDOW The window ID passed in by the client is not valid.

CS_APIERROR_SURFACELOST
One or more of the source and/or destination surfaces were
lost, as a result of a full-screen context becoming active, or
the surface getting evicted by a mode switch.

CSSWAPBUFFERTODISPLAY_APIERROR_UNSU
PPORTEDCONV

The specified color-space conversion is unsupported by
hardware.

CSSWAPBUFFERTODISPLAY_APIERROR_UNSU
PPORTEDSCALE

The implied scale factor is outside of the range supported
by the hardware.

CSSWAPBUFFERTODISPLAY_APIERROR_CANT
GETCLIPLISTSIZE

The OS call to obtain the size of the destination clip list
failed.

CSSWAPBUFFERTODISPLAY_APIERROR_CANT
GETCLIPLIST The OS call to obtain the destination clip list failed.

rbissell
Caveat: the idea of using overlays in conjunction with csSwapBufferToDisplay is still in its infancy.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 25 June 9, 2000
 Confidential

2.11 csExecuteCommands
(rvb)

The csExecuteCommands function causes a command buffer to be executed.
CSRESULT FX_CALL csExecuteCommands(

PCSGRAPHICALCONTEXT psGraphicalContext,
PCSUCODESTATEDESCRIPTOR psUCodeStateDescriptor,
PCSALLOCATIONDESCRIPTOR psStateAllocationDescriptor,
PCSALLOCATIONDESCRIPTOR psCommandAllocationDescriptor,
FxU32 u32UCodeSize,
FxU32 u32StateSize,
FxU32 u32CommandSize,
FxU32 u32StateOffset,
FxU32 u32CommandOffset);

!" psGraphicalContext: The memory address of a CSGRAPHICALCONTEXT
structure, that serves as a context handle. This handle was initialized and returned to
the client when it called.

!" psUCodeStateDescriptor: The memory address of a buffer that contains a
description of the expected microcode state. (rvb)[rvb9]

!" psStateAllocationDescriptor: The Allocation descriptor of the buffer of commands
that would restore the hardware state, if necessary.

!" psCommandAllocationDescriptor: Allocation descriptor of the buffer of commands
to be executed.

!" u32UCodeSize: The total size of the psUCodeStateDescriptor buffer, in bytes.
!" u32StateSize: The total size of the psStateAllocationDescriptor buffer, in bytes.
!" u32CommandSize: The total size of the psCommandAllocationDescriptor buffer, in

bytes.
!" u32StateOffset: The offset inside psStateAllocationDescriptor, that marks the

beginning of the state information.
!" u32CommandOffset: The offset inside psCommandAllocationDescriptor, that marks

where the commands are stored.

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome
CS_APIERROR_SYSTEMNOTINITIALIZED The system was never initialized with csInit()
CS_APIERROR_INVALIDCONTEXT The context ID passed in is not that of a valid context.

CS_APIERROR_SURFACELOST
One or more of the relevant surfaces were lost, as a result
of a full-screen context becoming active, or the surface
getting evicted.

CS_APIERROR_FULLSCREENACTIVE A full-screen context is presently active, so buffer execution
requests cannot be honored at the moment.

rbissell
There is still quite a bit of ongoing discussion about the mechanics (and definition) of this function.

rbissell
We’re still debating how to handle this.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 26 June 9, 2000
 Confidential

2.12 csLock
Central Services clients use csLock to get an address for use in accessing the buffer they specify as a
linear frame buffer. If both CSLOCK_FLAG_READABLE and CSLOCK_FLAG_WRITEABLE are
specified, a read/write lock is indicated. Certain combinations of lock type and 3D aperture may not be
supported (some platforms do not support reads through the 3D LFB aperture). Further, if the device has a
CAM for LFB access, the lock can fail due to a dearth of CAM entries.

Rampage Implementation Note: (rvb)
CSRESULT FX_CALL csLock(

PCSGRAPHICALCONTEXT psGraphicalContext,
PCSALLOCATIONDESCRIPTOR psAllocationDescriptor);

!" psGraphicalContext: The memory address of a CSGRAPHICALCONTEXT
structure, that serves as a context handle. This handle was initialized and returned to
the client when it called.

!" psAllocationDescriptor: The memory address of a client-supplied
CSALLOCATIONDESCRIPTOR structure. Some of the fields in this structure will
be initialized by the client prior to calling this function; others will be initialized by
the server.

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome
CS_APIERROR_SYSTEMNOTINITIALIZED The system was never initialized with csInit()
CS_APIERROR_INVALIDCONTEXT The context ID passed in is not that of a valid context.

CS_APIERROR_SURFACELOST
One or more of the relevant surfaces were lost, as a result
of a full-screen context becoming active, or the surface
getting evicted.

CS_APIERROR_FULLSCREENACTIVE A full-screen context (which has not lost its surfaces) is
presently active, so a new context cannot be created.

CSLOCK_APIERROR_UNSUPPORTEDLOCK Bad combination of LFB aperture and lock type

CSLOCK_APIERROR_NOLOCKAVAILABLE
The request failed due to exceeding the lock count. This is
usually due to some physical limitation, such as no free
CAM available to instantiate the lock.

rbissell
Chris Dow says: “The server must drain the command fifo, before returning CS_SUCCESS to the client, and set a semaphore indicating that writes to the command fifo are not allowed for the duration of the lock. Additionally, if this is a 3DLFB lock, a semaphore must be set and honored, since only one process/thread can use the LFB aperature at a time.”

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 27 June 9, 2000
 Confidential

2.13 csUnlock
Central Services clients use csUnlock to inform the driver that they no longer need LFB access to the
specified buffer. This is necessary because on some architectures, limited resources (such as CAMs) can be
associated with LFB access. It is considered poor form to lock a buffer and leave it locked, because there
can be limited resources (like CAM entries) associated with LFB access to certain types of memory.
CSRESULT FX_CALL csUnlock(

PCSGRAPHICALCONTEXT psGraphicalContext,
PCSALLOCATIONDESCRIPTOR psAllocationDescriptor);

!" psGraphicalContext: The memory address of a CSGRAPHICALCONTEXT
structure, that serves as a context handle. This handle was initialized and returned to
the client when it called.

!" psAllocationDescriptor: The allocation descriptor returned by csAlloc.

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome
CS_APIERROR_SYSTEMNOTINITIALIZED The system was never initialized with csInit()
CS_APIERROR_INVALIDCONTEXT The context ID passed in is not that of a valid context.

CS_APIERROR_SURFACELOST
One or more of the relevant surfaces were lost, as a result
of a full-screen context becoming active, or the surface
getting evicted.

CSUNLOCK_APIERROR_NOTLOCKED The specified buffer is not locked, so it can’t be unlocked.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 28 June 9, 2000
 Confidential

2.14 csDEBUGGetStringForError
This function returns an error string that is associated with the Central Services error returned from
each function.

 PFxSz FX_CALL csDEBUGGetStringForError(CSRESULT idError)

The returned string must not be written to!!!

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 29 June 9, 2000
 Confidential

2.15 csReleaseGraphicalContext
Central Services clients must call csReleaseGraphicalContext when they no longer need the specified
context. This allows the driver to release any resources associated with the context.

 CSRESULT FX_CALL csReleaseGraphicalContext(
PCSGRAPHICALCONTEXT psGraphicalContext);

!" psGraphicalContext: The memory address of a CSGRAPHICALCONTEXT
structure, that serves as a context handle. This handle was initialized and returned to
the client when it called.

Result Code (CSRESULT) Condition
CS_SUCCESS Successful outcome
CS_APIERROR_SYSTEMNOTINITIALIZED The system was never initialized with csInit()
CS_APIERROR_INVALIDCONTEXT The context ID passed in is not that of a valid context.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 30 June 9, 2000
 Confidential

3 Data Structures / Data Types

3.1 CSINIT
This structure is OS-specific. Below is a description of each field, for each specific operating system.

typedef struct csinit_s
{
 /* contents are entirely OS-specific */

} CSINIT, FxFAR *PCSINIT;

WIN32 (Windows 9x, Windows NT, Windows 2K)

HINSTANCE hDLLInstance

The client should initialize this field to the
value passed in to the first parameter of the
client’s “DllMain()” function, prior to calling
csInit().

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 31 June 9, 2000
 Confidential

3.2 CSGRAPHICALCONTEXT
This structure serves as a context handle for the Central Services client. Central Services stores client-
specific state information in this structure.

#define CSGRAPHICALCONTEXT_FLAGS_INITIALIZED 0x00000001
typedef struct csgraphicalcontext_s
{
 CSSLLISTNODE sNextNodeGraphicalContext
 CSSLLISTNODE sRootNodeAllocationDescriptor;
 FxU32 u32Flags;
 FxU32 u32ContextID;
 CSWINDOWID idWindow;
 CSPROCESSID idProcess;
 CSTHREADID idThread;
 CSVIDEOMODE sPreviousVideoMode;
 CSVIDEOMODE sCurrentVideoMode;
 CSOVERLAY sOverlay;
 CSDEVICECONFIG sDeviceConfig;

#if (defined(WIN32) || (defined(WIN95) && defined(IS_16)))
 CSHDC hDC;
 LPDIRECTDRAWCLIPPER psDirectDrawClipper;
#endif /* WIN32 */

 CSCHIPSPECIFICDATA sChipSpecificData;
 PCSCALLBACK pStateCallback;

} CSGRAPHICALCONTEXT, FxFAR*PCSGRAPHICALCONTEXT;

!" sNextNodeGraphicalContext: Internal use only.
!" sRootNodeAllocationDescriptor: Internal use only.
!" u32Flags: Internal use only.
!" u32ContextID: Internal use only.
!" idWindow: The handle of the window associated with this graphical context.
!" idProcess: Internal use only.
!" idThread: Internal use only.
!" sPreviousVideoMode: Internal use only
!" sCurrentVideoMode: Internal use only
!" sOverlay: Internal use only (rvb)
!" sDeviceConfig: A structure via which the server provides identification information

about the underlying hardware.
!" sChipSpecificData: A structure via which the server provides information about the

capabilities of the underlying hardware.
!" pStateCallback: The address of a function that Central Services can call to inform

the client of various asynchronous changes to the system state. The provided
callback function is expected to match this prototype:
void <function-name> (PCSGRAPHICALCONTEXT, FxU32);

Additionally, for WIN32 there are some OS-specific fields in this data structure.

!" hDC: Internal use only
!" psDirectDrawClipper: a ‘this’ pointer to the DirectDraw Clipper object that is

associated with this client’s window.

rbissell
A client could conceivably use more than one overlay (if the hardware supports it,) so I think this needs to be a linked list, rather than a single structure. This indirection is OK, because the server shouldn’t ever need to traverse this list.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 32 June 9, 2000
 Confidential

3.3 PCSCALLBACK

#define CS_STATE_SLIPOSSIBLE 0x00000001
#define CS_STATE_SLINOTPOSSIBLE 0x00000002
#define CS_STATE_EXCLUSIVE 0x00000003
#define CS_STATE_NOTEXCLUSIVE 0x00000004
#define CS_STATE_OVERLAYAVAILABLE 0x00000005
#define CS_STATE_OVERLAYLOST 0x00000006

typedef void (*PCSCALLBACK)(PCSGRAPHICALCONTEXT psGraphicalContext,

FxU32 u32Message, FxVOID* param);

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 33 June 9, 2000
 Confidential

3.4 CSCHIPSPECIFICDATA
This structure is used for multiple purposes, and in multiple contexts. (That’s context as in conceptual,
not context as in graphical.) This structure is used to:

• Report device capabilities ()
• Report device, resource, or attribute status ()
• Change device, resource, or attribute status ()

/* Chip types for the chip specific data field */
#define CSCHIPSPECIFICDATA_CHIPTYPE_SST2 0x01

typedef struct cschipspecificdata_s
{
 FxU32 u32Flags /* Undefined */
 FxU32 u32ChipType; /* Chip type for this structure.
 CSCHIPSPECIFICDATA_CHIPTYPE_SST2
 */
 union
 {

 CSSST2 sSST2; /* sst2 chip specific data */

 } unionChipType;

} CSCHIPSPECIFICDATA, *PCSCHIPSPECIFICDATA;

!" u32Flags: A field for non-chip specific flags in a chip-specific data structure.
!" u32ChipType: A field that identifies the rendering hardware exposed by the Central

Services server.
!" unionChipType: A union of structures, each representing a specific supported chip,

such as for SST2.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 34 June 9, 2000
 Confidential

3.5 CSSST2
This structure is part of the unionChipType union in CSCHIPSPECIFICDATA. The meaning of its
various fields will vary from one context to another (That’s context as in conceptual, not context as in
graphical.)

/* Chip specific data for the sst2 chipset */
#define CSSST2_REGSPACE_BASE 0x01
#define CSSST2_REGSPACE_IO (CSSST2_REGSPACE_BASE + 0x00)
#define CSSST2_REGSPACE_2D (CSSST2_REGSPACE_BASE + 0x01)
#define CSSST2_REGSPACE_3D (CSSST2_REGSPACE_BASE + 0x02)
#define CSSST2_REGSPACE_CMD (CSSST2_REGSPACE_BASE + 0x03)
#define CSSST2_REGSPACE_PCI (CSSST2_REGSPACE_BASE + 0x04)

typedef struct cssst2_s
{
 FxU32 u32Flags;
 FxU32 u32SLIAvailable; (rvb)
 FxU32 u32NumSLIChips; (rvb)
 FxU32 u32UseSLI; (rvb)
 FxU32 u32DeviceRev;
 FxU32 u32LFBRam; (rvb)
 FxU32 u32AGPRam; (rvb)
 FxU32 u32Antialiased; (rvb)
 FxU32 u32CAMEntry;
 FxU32 u32TileMode;

 FxU32 u32TileWidth;
 FxU32 u32TileHeight;

 FxU32 u32RegisterSpace; /* CSSST2_REGSPACE_XXXXYYYYY */
 FxU32 u32RegisterOffset;
 FxU32 u32IOSize;
 FxU32 u32RegisterValue;
 PFxVOID pvIOBase;
 PFxVOID pvMemBase0;
 PFxVOID pvMemBase1;

} CSSST2,FxFAR*PCSSST2;

!" u32Flags: A field for chip-specific flags. Presently not used.
!" u32SLIAvailable: Only used csGetGraphicalContext. Indicates that the underlying

hardware is SLI-capable. (see note above.)
!" u32NumSLIChips: The number of chips in the SLI system, if applicable. Can be 0

or 1 if the underlying hardware is not SLI-capable. (see note above.)
!" u32UseSLI: Only used by csSetVideoMode. (extremely deprecated, and may be

removed; see note above.)
!" u32DeviceRev: Only used (set) by csGetGraphicalContext. Reports the silicon

revision level of the underlying hardware.
!" u32LFBRam: Only used (set) by csGetGraphicalContext. Reports the amount of

frame buffer memory attached to the underlying hardware (this value is per-chip, not
per-board; so a 4-way SLI board will actually have 4x more LFB memory than what
is reported here.) (see note above.)

!" u32AGPRam: Only used (set) by csGetGraphicalContext. Reports the amount of
AGP memory available to the underlying hardware. (see note above.)

!" u32Antialiased: When set by csGetGraphicalContext, this field indicates the way-
ness of the underlying hardware’s AA capability (usually 2-way or 4-way). When

rbissell
I think SLI is a common enough feature that we can consider it to be not chip specific. So perhaps “u32SLIAvailable” should be moved to the CSDEVICECONFIG structure.

rbissell
For that matter… one can infer that SLI is supported when this value is greater than 1. So perhaps we can remove “u32SLIAvailable” altogether, and move this to CSDEVICECONFIG instead.

rbissell
Recommend we remove this one entirely, in deference to “csEnableSLI()” and “csDisableSLI()”.

rbissell
This concept is not chip specific; this value really belongs in CSDEVICECONFIG.

rbissell
This concept is not chip specific; this value really belongs in CSDEVICECONFIG.

rbissell
This concept is not chip specific; it should be moved to CSALLOCATIONDESCRIPTOR for the attribute case, and moved into CSDEVICECONFIG for the capability case (albeit renamed to “u32AACapable” or something similar.)

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 35 June 9, 2000
 Confidential

used (set/cleared) by the client prior to calling csAlloc, this field indicates whether
the allocated buffer should be allocated as an anti-aliased surface. (see note above.)

!" u32CAMEntry: Only used by csLock (set) and csUnlock (clear). Indicates which
CAM entry in SST2 was used for the lock.

!" u32TileMode: When used (set) by the client prior to calling csAlloc, this field
indicates the appropriate tile mode of the tiled surface that is being allocated. The
SST2 server will only read this field if the CS_MEMORY_TILED but was set in the
allocation descriptor. When used (read) by csSwapBufferToDisplay, this field tells
the SST2 server how to format the packets that instruct WAX to blit the tiled buffer
to the screen.

!" u32TileWidth: The width of the tile in pixels, as defined by u32TileMode.
!" u32TileHeight: The height of the tile, in pixels, as defined by u32TileMode.
!" u32RegisterSpace:
!" u32RegisterOffset:
!" u32IOSize:
!" u32RegisterValue:
!" pvIOBase:
!" pvMemBase0:
!" pvMemBase1: These 7 fields are used in a csDeviceSpecificCommunication call.

Their usage is highly discouraged.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 36 June 9, 2000
 Confidential

3.6 CSDEVICECONFIG
This structure is a substructure of CSGRAPHICALCONTEXT. It provided chip-specific information
about the underlying rendering hardware.

typedef struct csdevicecontext_s (rvb)
{
 FxU32 u32Flags; /* Undefined */
 FxU32 u32ContextID; /* context ID */
 CSWINDOWID idWindow; /* window ID */
 CSPROCESSID idProcess; /* Process ID */
#ifdef WIN32
 HDC hDesktopDC; /* WIN32 device context for ExtEscape
 calls */
#endif /* WIN32 */
 CSCHIPSPECIFICDATA sChipSpecificData;

} CSDEVICECONTEXT, *PCSDEVICECONTEXT;

rbissell
The stuff in red below is redundant, and should be removed. In fact, this entire structure could be removed, and just make “sChipSpecificData” a substructure of CSGRAPHICALCONTEXT, directly.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 37 June 9, 2000
 Confidential

3.7 CSALLOCATIONDESCRIPTOR
This structure is used to manage buffers allocated by Central Services.

#define CSALLOCATIONDESCRIPTOR_FLAGS_INITIALIZED 0x00000001
#define CSALLOCATIONDESCRIPTOR_FLAGS_LOCKED 0x00000002
typedef struct csallocationdescriptor_s
{
 CSSLLISTNODE sNextNodeAllocationDescriptor
 FxU32 u32Flags
 FxU32 u32BufferID;
 FxU32 u32BufferType;
 FxU32 u32MemType;
 FxU32 u32Locale;
 FxU32 u32Size;
 FxU32 u32Width;
 FxU32 u32Height;
 FxU32 u32Depth;
 FxU32 u32PhysicalOffset;
 PFxVOID pvLinearAddress;
 FxU32 u32LockCount;
 FxU32 u32LockFlags;
 FxU32 u32LinearStride;
 FxU32 u32LFBDepth;
 FxU32 u32PhysicalStride;

 CSCHIPSPECIFICDATA sChipSpecificData;

} CSALLOCATIONDESCRIPTOR, FxFAR* PCSALLOCATIONDESCRIPTOR;

!" u32Flags: Flags that allow the client library and server to keep track of the state of
this buffer. The flags are listed above.

!" u32BufferID: An ID that uniquely identifies this buffer.
!" u32BufferType: A field that identifies the intended use of the buffer. Valid values

are:
!" CS_BUFFER_FIFO
!" CS_BUFFER_PERSISTENT
!" CS_BUFFER_RENDER
!" CS_BUFFER_TEXTURE
!" CS_BUFFER_ZBUFFER

!" u32MemType: A field that identifies the intended surface flavor of the buffer. Valid
values are:

!" CS_MEMORY_LINEAR
!" CS_MEMORY_TILED

!" u32Locale: A field that indicates the intended locale of the buffer. Valid values are:
!" CS_LOCALE_FRAMEBUFFER
!" CS_LOCALE_AGP

!" u32Size: For linear surfaces, this is set by the client to indicate the desired size of the
buffer. For tiled surfaces, this is set by the server to indicate the actual size of the
buffer.

!" u32Width: (Only applies to tiled surfaces.) The desired width of the surface, in
pixels.

!" u32Height: (Only applies to tiled surfaces.) The desired height of the surface, in
pixels.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 38 June 9, 2000
 Confidential

!" u32Depth: For tiled surfaces (and linear, when appropriate) this indicates the client’s
intended color depth of the buffer, in bits. For linear buffers for which a color depth
doesn’t apply, this should be set to 8 by the client.

!" u32PhysicalOffset: This field is initialized by the server, and indicates the offset of
the allocated buffer, in the locale it was allocated in (AGP or frame buffer.)

!" pvLinearAddress: This field is only valid after a successful call to csLock, and
becomes invalid after a call to csUnlock. It indicates the host address that maps to
the physical offset of the buffer.

!" u32LockCount: The number of outstanding locks on this buffer.
!" u32LockFlags: Flags that indicate the lock’s status and attributes. Available flags

are:
!" CSLOCK_FLAG_READABLE
!" CSLOCK_FLAG_WRITEABLE
!" CSLOCK_FLAG_3DLFB

!" u32LinearStride: This field is only valid after a successful call to csLock, and
becomes invalid after a call to csUnlock. It indicates the apparent stride of a tiled
surface, in bytes.

!" u32LFBDepth: This field is initialized by the client, and indicates the LFB depth of
the surface. The server ignores this field unless the client set the
CSLOCK_FLAG_3DLFB flag, prior to calling csLock. (rvb)

!" u32PhysicalStride: This field is initialized by the server to indicate the actual stride
of the tiled surface, in bytes. In some contexts, the client may need to convert this
value to # of tiles before using. See the u32TileWidth and u32TileHeight fields in the
CSCHIPSPECIFICDATA structure.

rbissell
I don’t think I understand this completely.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 39 June 9, 2000
 Confidential

3.8 CSVIDEOMODE

(rvb)

typedef struct csvideomode_s
{
 FxU32 u32Flags;
 FxU32 u32Width;
 FxU32 u32Height;
 FxU32 u32ColorFormat;
 FxU32 u32RefreshRate;
 CSCHIPSPECIFICDATA sChipSpecificData;

} CSVIDEOMODE, FxFAR* PCSVIDEOMODE;

rbissell
This function is apocryphal. It’s likely to be removed at a later date.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 40 June 9, 2000
 Confidential

3.9 CSOVERLAY

(RVB)

#define CSOVERLAY_FLAGS_INITIALIZED 0x00000001
typedef struct csoverlay_s
{
 FxU32 u32Flags;
 FxU32 u32ColorFormat;
 FxU32 u32SrcWidth;
 FxU32 u32SrcHeight;
 FxU32 u32DestX;
 FxU32 u32DestY;
 FxU32 u32DestWidth;
 FxU32 u32DestHeight;
 CSCHIPSPECIFICDATA sChipSpecificData;

} CSOVERLAY, FxFAR*PCSOVERLAY;

rbissell
I’m not going to flesh this section out, because I believe that this structure will be change to be little more than a handle.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 41 June 9, 2000
 Confidential

3.10 CSSWAPBUFFERTODISPLAY
This structure is used when the client needs the server to blit an offscreen rendered buffer to an
onscreen location, while honoring an OS-supplied cliplist.

typedef struct csswapbuffertodisplay_s
{
 FxU32 u32Flags
 PCSALLOCATIONDESCRIPTOR psSrcBufferAllocationDescriptor;
 CSRECT sDestClipRegion;
 FxU32 u32DestX;
 FxU32 u32DestY;
 CSRECT sSrcClipRegion;
 FxU32 u32SrcColorFormat;
 FxU32 u32InterpolationType;
 CSWINDOWID idDestWindow;
 CSCLIPLIST sClipList;

} CSSWAPBUFFERTODISPLAY,FxFAR*PCSSWAPBUFFERTODISPLAY;

!" u32Flags: Reserved
!" psSrcBufferAllocationDescriptor: Internal use only
!" sDestClipRegion: A rectangle that describes the location and size of the destination

rectangle, which the client library initialized to correspond to the position and size of
the target window.

!" u32DestX: Not sure what this is for. Seems redundant.
!" u32DestY: Not sure what this is for. Seems redundant
!" sSrcClipRegion: This is a “meta-clip” rectangle that serves as a mask against the

clip list (rvb)
!" u32SrcColorFormat: The server compares this to the color format of the primary

surface, to determine of colorspace conversion is necessary.
!" u32InterpolationType: The interpolation method to use if the sizes of the source and

destination rectangles don’t match. (rvb)
!" idDestWindow: The OS or windowing system-supplied window handle that the clip

list applies to. (rvb)
!" sClipList: Clip list information from the OS or windowing system.

rbissell
Paula Womack says, “This isn’t very useful, because we could always just crop via the host.”

rbissell
It’s unclear if this applies to stretching, shrinking, or both.

rbissell
Seems redundant; this is also contained in the CSGRAPHICALCONTEXT structure that is also passed in to csSwapBufferToDisplay().

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 42 June 9, 2000
 Confidential

4 Appendices

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 43 June 9, 2000
 Confidential

4.1 FAQ

4.1.1 Why must a CS client still use csExecuteCommands when in
Exclusive Mode? Isn’t it safe to write directly to the cmdfifo registers
in that situation?
Ryan: Unfortunately, no. The issue is, some OpenGL games use GDI for their menuing system,
even when they’ve made themselves full-screen. GDI itself uses the command fifo, but it is not a
Central Services app, so it doesn’t play by the same rules. So csExecuteCommands() is still
required, even when in exclusive mode.

The ideal situation would be that all driver components use Central Services, so that this wouldn’t
be an issue. But Central Services is intended to be a short-term solution to a fundamental
shortcoming of our driver model. It is expected that the new driver architecture for GP-x will
address these same issues in a more holistic and complete manner. But with Central Services,
GDI always has write access to the hardware, and does not have to play by the same rules.

4.1.2 Why does the CS client library and/or server trap my CS client’s
window messages?
Ryan: Some window messages imply a context switch of one sort or another. An example is alt-
tab, which can cause one CS app to lose exclusivity, and another to gain it. The problem is that
these window messages are asynchronous; there’s no guarantee that the loser will be notified
before the winner. This is bad news, because it means that two clients could end up thinking that
they own the same hardware resources, if even for a short amount of time. But if the library/server
traps all messages for all windows of all the clients, it can notify the loser (via the callback) first,
even if it happens to receive the winner’s notification first.

Another way this can be handled is for the client to trap it’s own focus messages, and then
repeatedly ask the server for the desired resource, until it gets it. However, the callback solution
has the advantage that polling for the resource (which could require an ExtEscape call) is not
required.

4.1.3 Do I have to call csSwapBufferToDisplay if I have an overlay
resource, and am using it to display my rendered buffers?
Ryan: No. Just update the “start of overlay source” offset register when it’s time to swap buffers.
(IMPORTANT: See question 4.1.5.) When your client doesn’t have exclusivity, the CS client
library will monitor window move messages, and keep the destination rectangle lines up with the
target window. The only other responsibility you have is to stop using the overlay if you receive
“CS_STATE_OVERLAYLOST” via the state callback function.

4.1.4 Is the callback necessary?
Ryan: At the present date, no; you could set the callback function to NULL, and monitor your
own window messages. However, this could add needless OS-specificity to your client, and has
other disadvantages that are discussed in question 4.1.2.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 44 June 9, 2000
 Confidential

4.1.5 When I have an overlay resource, and am using to to display my
rendered buffers, can I insert the buffer swap packets into the
command fifo?
Ryan: No. The problem is that you might lose ownership of the overlay resource before you get a
chance to insert those packets into the actual command stream. You have to do this step after
calling csExecuteCommands(), and in lieu of csSwapBufferToDisplay(). (rvb)

rbissell
This FAQ entry is somewhat presumptuous; it assumes that we will attempt to avoid calling csSwapBufferToDisplay() in these cases, to maximize performance. This may not actually be true for initial CS bring-up, but it is almost certain to be true once we’ve gotten the whole thing working.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 45 June 9, 2000
 Confidential

4.2 Glossary

4.2.1 Exclusive Mode
When a client is running in Exclusive Mode, it has full ownership of the underlying rendering and
rasterization hardware. A client is said to be in Exclusive Mode if it meets all of the following
requirements:

!" The window it has declared as its rendering target currently has focus
!" The client area of the window that the CS client has declared as its rendering

target originates at position (0,0) on the desktop, and its size corresponds exactly to
the size of the desktop.

Since these parameters can change independently and asynchronously of the client, Central Services
must inform each client when they gain or lose exclusivity. This is done via the state callback function
that was associated with the client’s window at csGetGraphicalContext() time.

Here is a list of some of the things a client can lose ownership of, when it loses exclusivity:

!" Overlay resources
!" Render buffers
!" Texture buffers

4.2.2 Primary Surface
The region in the frame buffer that the backend graphics hardware uses as the primary input to the
rasterizer. (It may mix in various off-screen overlay surfaces as well, but these are not considered the
primary surface… there can be only one.)

4.2.3 Command Buffer
Central Services clients use command buffers to store commands to be executed. They can be
submitted for execution by the XQTBUFFER or RSTRXQTBUFFER protocol requests.

4.2.4 Sentinel Buffer
Sentinel buffers are used to indicate that a particular event in an asynchronous command stream has
occurred. The most common use is to end a command buffer with an LFB command to write a serial
number to a place in memory (the sentinel buffer). The number to be written is a serial number for the
piece of the command buffer that stores the LFB command. Using this, the client can determine if the
subsection of the buffer has executed and is therefore free for reuse.

4.2.5 State Restoration Buffer
State restoration buffers restore the state expected at the beginning of a command buffer. The
command buffer may then modify the state from that point.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 46 June 9, 2000
 Confidential

4.3 Client-Managed Texture Heaps
TBD.

Central Services
API Reference Document

Revision 0.5

Copyright  2000 3dfx Interactive, Inc. Revision 0.5
Proprietary and Preliminary 47 June 9, 2000
 Confidential

4.4 Debugging

Debugging messages are always available no matter how the library is built. To
enable debug output use the following environment variables:

 CSDEBUG_FILE=DEBUG to output to a debugger, filename to output
 to a file
 CSDEBUG_LEVEL=Maximum level of debug output to see. Various
 levels of debug are avaialable.

	Contents
	Revision History

	Introduction
	
	Client state machine
	Hardware Litmus Test
	Software Litmus Test
	Provide Information about the System Configuration
	Provide Memory Management for All Types of Surfaces
	Initialize Hardware for Rendering
	Initialize Command Transport to Enable Rendering
	Initialize Video for Rendering
	Get Rendered Pixels to the Screen
	Command Execution
	Reading Hardware Registers

	Functional Overview
	csUnInit
	csGetProtocolRevision
	csGetGraphicalContext
	csRegisterStateCallback
	csAlloc
	csFree
	csSetVideoMode
	csAcquireOverlay
	csSwapBufferToDisplay
	csExecuteCommands
	csLock
	csUnlock
	csDEBUGGetStringForError
	csReleaseGraphicalContext

	Data Structures / Data Types
	CSINIT
	CSGRAPHICALCONTEXT
	PCSCALLBACK
	CSCHIPSPECIFICDATA
	CSSST2
	CSDEVICECONFIG
	CSALLOCATIONDESCRIPTOR
	CSVIDEOMODE
	CSOVERLAY
	CSSWAPBUFFERTODISPLAY

	Appendices
	FAQ
	Why must a CS client still use csExecuteCommands when in Exclusive Mode? Isn’t it safe to write directly to the cmdfifo registers in that situation?
	Why does the CS client library and/or server trap my CS client’s window messages?
	Do I have to call csSwapBufferToDisplay if I have an overlay resource, and am using it to display my rendered buffers?
	Is the callback necessary?
	When I have an overlay resource, and am using to to display my rendered buffers, can I insert the buffer swap packets into the command fifo?

	Glossary
	Exclusive Mode
	Primary Surface
	Command Buffer
	Sentinel Buffer
	State Restoration Buffer

	Client-Managed Texture Heaps
	Debugging

