FxEngine 0.40

- a 3d engine using the 3dfx chipsets to it's limits by Andreas Ingo

and contributors

PLEASE NOTE THAT THIS DOCUMENTATION IS VERY INCOMPLETE AND HAVE BUGS, DON'T TAKE IT SERIOUSLY. FOR THE MOMENT THE BEST WAY OF LEARING FXENGINE PROGRAMMING IS EXAMING THE CODE AND EMAIL ME IF YOU GET INTO TROUBLE.

PLEASE NOTE:

This file was written in windows Wordpad so for the most accurate display use wordpad

instead of word.

Chapter 1 - Read this first

Chapter 2 - Purpose

Chapter 3 - FxEngine fundamentals

	

	3.1 OverView

	3.2 How to build FxEngine applications

	3.3 Datatypes

	3.4 Functions

	

Chapter 4 - FxEngine API Reference

	

	4.1 fxeGetVersion

	4.2 fxeInitialize

	4.3 fxeShutdown

	4.4 fxeCameraMove

	4.5 fxeCameraRotate

	4.6 fxeLightsourceAdd

	4.7 fxeLightsourceLight

	4.8 fxeLightsourceMove

	4.9 fxeLightsourceDelete

	4.10 fxeTextureLoad

	4.11 fxeTextureDelete

	4.12 fxeObjectAdd

	4.13 fxeObjectLoad

	4.14 fxeObjectMove

	4.15 fxeObjectRotate

	4.16 fxeObjectScale

	4.17 fxeObjectSetShape

	4.18 fxeObjectSetShadingType

	4.19 fxeObjectDelete

	4.20 fxeWorldRender

	4.21 fxeAmbientlightLight

	4.22 fxeCreateCylinder

	4.23 fxeWorldDisplay

	4.24 fxeFogSetMode

	4.25 fxeFogSetColor

	4.26 fxeLandscapeCreate64x64

	4.27 fxeLandscapeAddToWorld

	4.28 fxeBackgroundSetColor

	4.29 fxeVSyncEnable

	4.30 fxeVSyncDisable

	4.31 fxePerformanceInit

	4.32 fxePerformanceGet

	4.33 fxeSetRenderState

 4.34 fxeBackgroundClear

	4.35 fxeCharactersetLoad

	4.36 fxeSetDefaultCharacterset

	4.37 fxeCharactersetSetDefaultDrawingMode

	4.38 fxeCharactersetSetSpecialDrawingMode

	4.39 fxeStringDrawXY

	4.40 fxeBitmapCreate

	4.41 fxeBitmapDrawXY

	

Chapter 5 - FxEngine demonstration programs

	5.1 FxeTest

	5.2 FxeWinTest

Chapter 6 - The sourcecode

Chapter 7 - Contacting the author

Chapter 8 - List of contributors

Chapter 1 - Read this first

	FxEngine is a 3d Engine with sourcecode developed by Andreas Ingo, matrix functions used internally is using matrix functions by Hugues Landry. The first contributor! Also I have got a lot of help from Daniel M Jones, mostly with lensflares and the particle system.

	

	This document assumes you know the C language and have some experience in 3d programming. If you don't have this knowledge I really recommends a great book: The Black Art of 3d Programming. It's the best book in the topic I have found.	

	Everything in this document describes version 0.40 of FxEngine and please note that the FxEngine API

can change in later versions of FxEngine so this document will by no means cover future versions of FxEngine API.

	FxEngine isn't really freeware but you can use it for free and modify it as you want but you can't call it FxEngine. You can (and are encouraged to) send in your sourcecode to the author and only the author can call the software FxEngine. If you want to change something in FxEngine you can do this. Send in your contributions with e-mail to andreas.ingo@swipnet.se. All contributors that have written code that becomes part of FxEngine (only the author decides what's going to be part of FxEngine) will be mentioned in future versions of this document.

Chapter 2 - Purpose

	FxEngine is here for you, I hope it will be a good resource to learn from with sourcecode available to the public, the purpose is that we all is going to learn something from it, improving it along the way, it is in no way a commercial project. FxEngine is available for download from the 3dfx Programming Secrets website at

http://welcome.to/3dfxPS and it's completely free to download. Infact FxEngine is just a subproject for the 3dfx Programming Secrets website, a project that the readers of that site can learn from.

	There was months since I wrote this and mostly it is true but maybe this will change in the future and FxEngine is soon to be used in a game that I'm working on. The engine will improve a lot in the future and I don't know if I will release it for free as it going to be better and better. The engine I have for the moment is mostly a work at freetime. This may also change in the future.

Chapter 3 - FxEngine fundamentals

3.1 - Overview

	FxEngine consists of a library of callable functions with C interface which means you have to have a C compiler to use it. If you don't need the source just use it you can use Delphi too. Included is a header file and a dll for you delphi phreaks. FxEngine is currently built upon GLIDE3X, a API developed by 3dfx interactive and only works on chipsets compatible with GLIDE such as voodoo, voodoo2, voodoo banschee. I can't guaranty

that the engine is working on voodoo rush for the mement due to very buggy drivers. Voodoo Banchee is a new chip and it will probably work with this chip too as it is compatible with GLIDE but I haven't tested FxEngine on this chip. This means that FxEngine is pure hardware accelerated. In the future maybe other chipsets will be supported but for this version only GLIDE compatible hardware is supported.

A software version of FxEngine is not planned as FxEngine uses Z buffering, Transparency, Trilinear filtered texture mapping, RGB light, Gouraud shading, Fogging and much more at the same time which means that software just can't do it fast enough on todays processors! (over 60 FPS...)

I have plans for a OpenGL version but it is just plans and nothing else.

3.2 - How to build FxEngine applications

	FxEngine have been built successfully using MSVC++ 5.0.

If you wan't a easy compilation process you better use this tool. Earlier versions of the engine was compiled with LccWin32 but I can't guaranty it will be easy to use that compiler now as I have compiled with MSVC++ the last months.

	When you want to built FxEngine applications you need to link with the fxengine.lib file.

You can this file in the FxEngine lib directory. The FxEngine

functions is declared in various header files (h-files). You can find the header files in the FxEngine include directory. To use FxEngine's functions and structures you need to include the Fx.h file. You don't need Glide3x

SDK anymore to use FxEngine as it is linked with the FxEngine.lib file. It should be VERY easy to compile FxEngine applications now, just include Fx.h and link with FxEngine.lib! Delphi users needs to put the FxEngine.pas file in the uses list of any unit that is using FxEngine. Delphi users also need the fxenginedll.dll file in the same directory as their fxengine applications.

3.3 - Datatypes

	FxEngine uses various datatypes such as fxePolygon, fxeObject, fxeLightsource that represents various things. For example the fxePolygon datatype represents a polygon in the way it's defined by FxEngine.

This section is to be updated with detailed information but I'm out of time...

3.4 - Functions

	All functions in FxEngine starts with the fxe prefix which stands for FXEngine. This is to distinguish FxEngine functions from other and to make some sort of standard for FxEngine. After the fxe prefix comes a descriptive name of the function. The function name tells us what object basis the function works on. For example functions that operates on objects is called fxeObjectX where X is the name of the operation on the object. X can for example be Rotate or Move.

	

	Many of the FxEngine functions uses handles to objects. For example when you shall move a object you need a handle to the object to move along with the objects new position and when you shall change the properties of a light source you need to pass a handle to the lightsource to change to the function.

Chapter 4 - FxEngine API reference

4.1 fxeGetVersion

Description:

	

	As FxEngine is currently under heavily development the API will change on the way and if you are 	doing applications using FxEngine you only have one safe way to get to know which version of the API 	you are using and that is calling the fxeGetVersion function. You should call this function to be sure 	that your application that is written for a specific version of FxEngine really have linked to this version 	of FxEngine.

Declaration:

	

	void fxeGetVersion(int *MainVersion, int *UnderVersion);

Parameters:

	

	Mainversion is a pointer to a integer that will be filled in with the mainversion number of FxEngine.

	UnderVersion is a pointer to a interger that will be filled in with the underversion number of FxEngine.

Returns:

	Nothing.

4.2 fxeInitialize

Description:

	

	This function needs to be called before any function in FxEngine except fxeGetVersion. It initializes 	data used by FxEngine and sets 3dfx videomode.

Declaration:

	

	int fxeInitialize(HWND hwnd, int Resolution);

Parameters:

	

	hwnd is a handle to a window that will be initialized to 3dfx videomode. A handle to a window is 	required in version 0.35 of FxEngine. You can't specify NULL anymore, just must pass a valid window

	handle.

	Resolution is the resolution you want to use. You can choose one of these values:

	

	FXE_RES_640x480

	FXE_RES_800x600

	FXE_RES_1024x768

	FXE_RES_1280x1024

	FXE_RES_1600x1200

Returns:

	fxeInitialize returns a integer which can be FXETRUE or FXEFALSE. If fxeInitialize returned 	FXETRUE then it was succesful. If fxeInitialize returned FXEFALSE fxeInitialize failed and calling 	other functions in FxEngine will not work properly.

4.3 fxeShutdown

Description:

	

	fxeShutdown should be called when your application decides not to call any functions in FxEngine 	anymore. It frees memory used by FxEngine and restores the videomode back from 3dfx videomode. 	When this function have been called any other function in FxEngine except fxeInitialize and 	fxeGetVersion should not be called. fxeShutdown is typically called when your application exits and 	returns back to windows.

Declaration:

	

	void fxeShutdown(void);

Parameters:

	None.

Returns:

	

	Nothing.

4.4 fxeCameraMove

Description:

	Moves the camera (viewpoint) in the world to a specified position. This function is used to move around 	in the world.

Declaration:

	void fxeCameraMove(float x, float y, float z);

Parameters:

	The x,y and z arguments are float values and specifies where in the world the new camera position 	shall be. The arguments must be in the range of -65535..65535.

Returns:

	Nothing.

4.5 fxeCameraRotate

Description:

	Rotates the camera to a specific angle. This function is used to "look" in any direction in the world.

	

Declaration:

	

	void fxeCameraRotate(float xa, float ya, float za);

	

Parameters:

	The xa, ya and za parameters specifies the rotation angles of the camera rotation. The xa parameter 	specifies the rotation angle around the x axis, the ya parameter specifies the rotation angle around the

	y axis and the za parameter specifies the rotation angle around the z angle. The parameters must be in

	the range of 0..359.

Returns:

	Nothing.

4.6 fxeLightsourceAdd

Description:

		

	Creates a new point lightsource with specific parameters. This function is used to light your objects, to 	be able to light your objects from special directions you need this function.

Declaration:

	fxeLightsourceHandle fxeLightsourceAdd(float r, float g, float b, float x, float y, float z,

		float DistanceAffection, fxeLensflareHandle LFH);

Parameters:

	The r,g, and b parameters specifies the RGB components of the lightsource. A lightsource can have 	different R, G and B values which make true RGB lightning possible. The r,g and b parameters must be 	in the range of 0..1.

	

	The x,y and z parameters specifies the position of the lightsource in the world in the world.

	The x,y and z parameters must be in the range of -65535..65535.

	The DistanceAffection parameter describes distance where a lightsource affects objects. If 	DistanceAffection is very close to 0 the lightsource will affect objects on very long distances but if 	DistanceAffection is greater, for example 1 the lightsource will only affect objects on distances close to 	the lightsource.

	LFH is a handle to a lensflare created by the fxeLensflareCreate function.

	If this value is NULL then the lightsource will not use lensflares.

Returns:

	

	The function returns a fxeLightsourceHandle which is a handle to a lightsource. When you need to use 	your new lightsource in other lightsource related functions you need this handle.

4.7 fxeLightsourceLight

Description:

	This function sets the R,G,B components of a specific lightsource.

Declaration:

	

	void fxeLightsourceLight(fxeLightsourceHandle LightsourceHandle, float r, float g, float b);

Parameters:

	LightsourceHandle is a handle to a lightsource. The lightsource with the handle LightsourceHandle is

	affected by the function.

	The r,g,b parameters specifies the R,G,B components of the Lightsource. The r,g,b parameters must be

	in the range of 0..1.

Returns:

	Nothing.

4.8 fxeLightsourceMove

Description:

	This function moves a specific lightsource to a specific position in the world.

Declaration:

	void fxeLightsourceMove(fxeLightsourceHandle LightsourceHandle, float x, float y, float z);

Parameters:

	LightsourceHandle is a handle to a lightsource. The lightsource with the handle LightsourceHandle is

	affected by the function.

	The x,y,z parameters specifies the position of the Lightsource in the world.

	The x,y,z parameters must be in the range of -65535..65535.

	

Returns:

	Nothing.

4.9 fxeLightsourceDelete

Description:

	Deletes a specific lightsource from the world. When a lightsource have been deleted it's handle is 	unusable.

Declaration:

	void fxeLightsourceDelete(fxeLightsourceHandle LightsourceHandle);

Parameters:

	Lightsourcehandle is a handle to a lightsource. The lightsource with handle LightsourceHandle is

	deleted from the world and can't be used anymore.

Returns:

	

	Nothing.

4.10 fxeTextureLoad

Description:

	Loads a texture from a 3df file. 3df files can be created from truevision targa files (tga files) with 	the texus utility. Texus is available of my homepage at http://welcome.to/3dfxPS. The texture loaded is 	used to texturemap specific polygons in the world.

	

Declaration:

	fxeTextureHandle fxeTextureLoad(char *Filename);

Parameters:

	Filename is a pointer to a NULL terminated string that specifies the filename of the 3df texture file.

Returns:

	

	fxeTextureLoad returns a handle to a texture. This handle can be used in a fxePolygon structure 	in the 	datamember TH

	in conjunction with setting the TexMode datamember of the fxePolygon structure to

	TEXTURE_MAPPED. This will texture map the polygon with the texture you loaded with

	this function. If the returnvalue isn't NULL it's a valid handle. If the returnvalue is NULL the function

	failed (most often because the function couldn't find the file).

4.11 fxeTextureDelete

Description:

	This function deletes a specific texture. When the texture have been deleted it's unusable.

Declaration:

	void fxeTextureDelete(fxeTextureHandle TextureHandle);

Parameters:

	

	TextureHandle is a handle to a texture that will be deleted.

Returns:

	Nothing.

4.12 fxeObjectAdd

Description:

	Adds a object to the world, after the object have been added to the world it's rendered if it's in the 	viewing volume.

Declaration:

	fxeObjectHandle fxeObjectAdd(fxeObject *Object);

Parameters:

	Object is a pointer to a fxeObject structure that is going to be added to the world. fxeObject is a 	structure declared in fxengine.h. It has several datamembers that need to be initialized properly before 	fxeObjectAdd is called, the datamembers that need to be initialized is explained here:

	PolygonList

 A pointer to a list of fxePolygon structures. This polygonlist is the polygons that the object is built of.

	Every polygon structure in the polygon list needs to be correctly set up. For this information

	refer to the datatype section of FxEngine API reference.

	VertexList

	A pointer to a list of fxeVertex structures. This vertexlist is used to build up the polygons in the

	polygonlist. Every polygon in the object uses indices into this vertexlist to get the vertices that

	builds up the polygon.

	VerticesWorld

	This is a pointer to a list of fxeInternalVertex structures. The fxeInternalVertex structures doesn't need

 to be initialized but they need to be allocated memory for or else FxEngine will crash.

	VerticesCamera

	This is a pointer to a list of fxeInternalVertex structures. The fxeInternalVertex structures doesn't need

 to be initialized but they need to be allocated memory for or else FxEngine will crash.

	x,y,z	

	Three floating point values that specifies the position of the object in the world.

	Radius

	A floating point value that specfies the maximum radius of the object. This variable is used to check if 	the object is outside the viewing volume.

	NumPolys

	A integer that specifies the number of polygons the object consists of.

	NumVertices

	A integer that specifies the number of vertices the object consists of.

Returns:

	This function returns a handle to a object. This handle can be used in calls to other object related 	functions.

4.13 fxeObjectLoad

Description:

	This function loads a object in formats supported by FxEngine. The function can scale the object to a 	specific size and always positions the object in the center of the world at (0,0,0).

	The formats currently supported by FxEngine is as follows:

	Format: Supported Functions:

	3DS Geometry data and Materials (Materials limited to textures)

Declararation:

	fxeObjectHandle fxeObjectLoad(char *Filename, int FileFormat, float ScaleFactor, int UseTextures);

Parameters:

	Filename is a pointer to a NULL terminated string that specifies the filename of the file to be 	loaded.

	FileFormat is a integer that determines the format you want to use. The following values are allowed in 	FxEngine 0.35:

	

	OBJECT_3DS - tells fxeObjectLoad that the fileformat to use is 3d studio scenes (*.3ds)

	ScaleFactor: If scalefactor is 0 the object is not scaled, the vertices is just copied from the file into

	the object. If scalefactor is a positive non zero value the object is scaled so that it's maximum radius

 	is ScaleFactor.

	UseTextures is a integer which can be FXETRUE or FXEFALSE. If FXEFALSE is specified no textures

	is loaded from disk. If FXETRUE is specified all textures found is loaded from disk and used in the 	object.

 Important note:

	FxEngine doesn't use the original textures in the 3ds scene but rather the original textures converted to 	3df format. This because the original texture formats such as gif and jpeg doesn't use mipmapping but

	FxEngine is doing this. So what you need to do to use your textures in FxEngine is to convert them to 	3df format. The 3df files must have the same prefix as the original files but the 3df extension.

	A example:

	You have 2 textures and a 3ds model.

	The texture files is text1.gif and text2.jpg. You now needs to convert the text1.gif and text2.jpg to 	the 3df format. When this is done you have the text1.3df and text2.3df files. The file names MUST be

	text1.3df and text2.3df, if not fxeObjectLoad can't find the textures.

Returns:

	This function returns a handle to a object. Note that you need to call the fxeObjectAdd function to 	actually add the object to the rendering pipeline and make it visible.

	This handle can be used in calls to other object related functions.

4.14 fxeObjectMove

Description:

	This function moves a object to a specific position in the world.

Declaration:

	void fxeObjectMove(fxeObjectHandle ObjectHandle, float x, float, y, float z);

Parameters:

	

	ObjectHandle is a handle to object which is going to be moved.

	X,y and z is values defining the new position of the object in the world.

	X,y and z must be in the range of -65535..65535.

Returns:

	Nothing.

4.15 fxeObjectRotate

Description:

	This function rotates a object around it's X,Y and Z axis.

Declaration:

	void fxeObjectRotate(fxeObjectHandle ObjectHandle, float xa, float ya, float za);

Parameters:

	ObjectHandle is a handle to the object to be rotated.

	Xa, ya and za is the rotation angles. Xa specifies the amount of rotation around the x axis,

	ya specifies the amount of rotation around the y axis and za specifies the amount of rotation around the 	z axis. Xa, ya and za must be in the range of 0..359.

Returns:

	Nothing.

4.16 fxeObjectScale

Description:

	Scales a object with a scaling factor, the function assumes that the object is centered around its local

	coordinate system. This function is used to change the size of a object.

Declaration:

	void fxeObjectScale(fxeObjectHandle ObjectHandle, float SFactor);

Parameters:

	ObjectHandle is a handle to a object that will be scaled by a scaling factor.

	SFactor is the scaling factor that the object will be scales with. A scaling factor of 1.0 performs no 	scaling and a scaling factor of 2.0 makes the object 100% larger. You can specify scaling factors

	less than 1.0 to, if you do the object will shrink.	

Returns:

	Nothing.

4.17 fxeObjectSetShape

Description:

	Sets the scape of the object. Valid shapes are polygon, lines and points.

Declaration:

	void fxeObjectSetShape(fxeObjectHandle ObjectHandle, int Shape);

Parameters:

	ObjectHandle is a handle to a object you want to change the shape of.

	Shape is a integer that can be any of these values:

	FXE_SHAPE_POLYGONS - the object is going to be drawn using polygons

	FXE_SHAPE_LINES - the object is going to be drawn using lines

	FXE_SHAPE_POINTS - the object is going to be drawn using points

Returns:

	Nothing.

4.18 fxeObjectSetShadingType

Description:

	Sets the shading type of the object. Currently supported shading types is flat shading and gouraud 	shading.

Declaration:

	void fxeObjectSetShadingType(fxeObjectHandle ObjectHandle, int ShadingType);

Parameters:

	ObjectHandle is a handle to a object you want to change to shading type of.

	ShadingType is a integer which can be any of these values:

 	FLAT_SHADING : the object will be flat shaded

	GOURAUD_SHADING : the object will be gouraud shaded

Returns:

	

	Nothing.

4.19 fxeObjectDelete

Description:

	Deletes a specific object. When the object have been deleted it is unusable.

Declaration:

	void fxeObjectDelete(fxeObjectHandle ObjectHandle);

Parameters:

	ObjectHandle is a handle to a object that will be deleted.

Returns:

	Nothing.

4.20 fxeWorldRender

Description:

	This function is HUGE and renders the whole world. Almost whole FxEngine is built around this 	function. It renders object that's in the viewing volume

	(the enviroment seen by the camera).

Declaration:

	void fxeWorldRender(int DisplayWorld);

Parameters:

	DisplayWorld determines if the rendered world should be displayed on the screen or not. If the world

	is to be displayed on screen then set DisplayWorld to FXETRUE, else to FXEFALSE.

Returns:

	Nothing.

4.21 fxeAmbientlightLight

Description:

	This function sets the ambient (overall) light level in the world. The default is no ambient light.

Declaration:

	void fxeAmbientlightLight(float r, float g, float b);

Parameters:

	The r,g and b parameters specify the R,G and B components of the ambient lightsource. The r,g and b 	parameters must be in the range of 0..1.

Returns:

	Nothing.

4.23 fxeWorldDisplay

Description:

	Displays a world on the screen if it wasn't already displayed using the fxeRenderWorld function setting

	the DisplayWorld parameter to FXETRUE.

Declaration:

	void fxeWorldDisplay(void);

Parameters:

	None.

Returns:

	Nothing.

4.24 fxeFogSetMode

Description:

	Sets the fogging mode of FxEngine.

Declaration:

	void fxeFogSetMode(int FogMode);

Parameters:

	FogMode specifies the fogging mode FxEngine will be set to. Currently available modes are

	NO_FOGGING and DISTANCE_FOGGING.

	If NO_FOGGING is specified no fogging is used at all. If DISTANCE_FOGGING is used your

 	objects will face away in a specified fogging color as they are moved away from the camera. 	

	The fogging color the objects will fade away with a specified with the fxeFogSetColor function.

Returns:

	Nothing.

4.25 fxeFogSetColor

Description:

	Sets the color of the fog used when DISTANCE_FOGGING is specified using the fxeFogSetMode 	function.

Declaration:

	void fxeFogSetColor(fxeColor *FogColor);

Parameters:

	FogColor is a pointer to a fxeColor structure that specifies the color used with DISTANCE_FOGGING.

Returns:

	Nothing.

4.27 fxeLandscapeAddToWorld

Description:

	

	Adds a landscape to the world.

Declaration:

	void fxeLandscapeAddToWorld(fxeLandscapeParentHandle pLandscape);

Parameters:

	pLandscape is a handle to a landscape that will be added to the world.

Returns:

	Nothing.

4.28 fxeBackgroundSetColor

Description:

	Sets the color of the background of the rendered scene.

Declaration:

	void fxeBackgroundSetColor(fxeColor* pColor);

Parameters:

	pColor is a pointer to a fxeColor structure that specifies the color of the Background.

Returns:

	Nothing.

4.29 fxeVSyncEnable

4.30 fxeVSyncDisable

4.31 fxePerformanceInit

4.32 fxePerformanceGet

4.33 fxeSetRenderState

4.34 fxeBackgroundClear

4.35 fxeCharactersetLoad

4.36 fxeSetDefaultCharacterset

4.37 fxeCharactersetSetDefaultDrawingMode

--

4.38 fxeCharactersetSetSpecialDrawingMode

--

4.39 fxeStringDrawXY

4.40 fxeBitmapCreate

4.41 fxeBitmapDrawXY

Chapter 6 - The sourcecode

	The sourcecode of FxEngine can be found in the fxengine.c file that was shipped with FxEngine.

fxengine.lib have been successfully built with MSVC++ 5.0.

Chapter 7 - Contacting the author

The author can be contacted by e-mail at andreas.ingo@swipnet.se. You can also contact him with ICQ,

his number is 13177481. You shall of course also visit the homepage at http://welcome.to/3dfxPS

Chapter 8 - List of contributors

	All people that contributes with some useful code or other help will be mentioned in this section, thanks to you all!

Hugues Landry - Matrix Math functions

Daniel M Jones - Provided code for particle system and lensflare effect

